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Trinary-Projection Trees
for Approximate Nearest Neighbor Search

Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and Xian-Sheng Hua

Abstract—We address the problem of approximate nearest neighbor (ANN) search for visual descriptor indexing. Most spatial partition
trees, such as KD trees, VP trees and so on, follow the hierarchical binary space partitioning framework. The key effort is to design
different partition functions (hyperplane or hypersphere) to divide the points so that (1) the data points can be well grouped to support
effective NN candidate location and (2) the partition functions can be quickly evaluated to support efficient NN candidate location.
We design a trinary-projection-direction-based partition function. The trinary-projection direction is defined as a combination of a few
coordinate axes with the weights being 1 or —1. We pursue the projection direction using the widely-adopted maximum variance
criterion to guarantee good space partitioning and find fewer coordinate axes to guarantee efficient partition function evaluation. We
present a coordinate-wise enumeration algorithm to find the principal trinary-projection direction. In addition, we provide an extension
using multiple randomized trees for improved performance. We justify our approach on large scale local patch indexing and similar
image search.

Index Terms—Approximate nearest neighbor search, KD trees, trinary-projection trees.
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1 INTRODUCTION adopt NN search to quickly find the reliable image patches.

Nearest neighbor (NN) search is a fundamental problem i Nearegt neighbor ser?lrc_h in thiedimensional r.netnc. space
is defined as follows: given a quegy the goal is to find an

computational geometry [12] and machine learning [42].
also plays an important role and has various apphcatlonseTlemenﬂ\IN(q) from the. fjatabasa’ h{xl’ , Xn} SO that
o " . (q) = argminyey dist(q,x). In this paper, we assume
computer vision and pattern recognition. The basic butress(?h s .
; . ; . : at R? is an Euclidean space antist(q,x) = |q — x]|2,
tial task, content-based image and video retrieval, is aeséa . | . . . -
hich is appropriate for most problems in computer vision.

neighbor problem: to find the examples that are most sinolar he straightforward solution, linear scan, is to compute th
the query in a large database. The nearest neighbor CIB’SSidlestance t0 each point Whosé time com I,exit)a d). The
relying on NN search, is frequently employed for recogmitio,. P P fnd).

and shape matching [18], [57]. Local feature-based objet%:rpe cost is too expensive for large scale high-dimensional

retrieval methods include the step of searching a huge datab 35S Multi-dimensional indexing methods, such as the pop

of patch descriptors for most similar descriptors [38].i&fis ular K.D tree [6], [17] using branch and bound or bes@-first
applications, such a3D modeling from photo databases [44 echniques [3], [5], have been proposed to reduce the time of

and panorama building [8], depend on NN search for fa ?arching exact NNs. However, for high-dimensional cases i

matching to establish the correspondences of local featlﬁ%ns out that_ S.UCh approgches are not much more efficient (or
even less efficient) than linear scan.

points among images. Graphics applications, such as textur . . S
. . : To overcome this issue, a lot of investigations have been
synthesis [13], [27], image completion [19] and so on, also . . :
made instead on approximate nearest neighbor (ANN) search.
o _ _ _ ~ There are two basic categories of ANN search. One is error-
. ée}ﬁ/r?ggclﬁirgth the Media Computing Group, Microsoft Rededsia, ¢qnstrained ANN search that terminates the search when the
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e Y. Jia is with the Robotics Institute, Carnegie Mellon Unsity, USA. search with the queryy is to find one pointp so that

~I]E-nlail_: jiayo#5?1@glma?l.comf erdiscioi . . dist(q,p) < (1 + ¢)dist(q,p*), with p* being the true
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TABLE 1
Comparison of trinary-projection (TP) trees with KD trees, PCA trees, spill trees, random projection (RP) trees,
k-means trees and vantage point (VP) trees. Search order: the order of visiting data points. Branching cost: the time
cost of determining which child is next accessed at the internal node. Time overhead: the extra time cost of
accessing the point in a leaf node. Overall performance: the overall ANN search performance in terms of time cost
and precision.

| | TP tree | KD tree | PCA tree[ Spill tree | RP tree || K-means tree| VP tree |

search order medium poor good medium | medium good good
branching cost O(1) o(1) O(d) O(d) O(d) O(d) O(d)
time overhead low low high high high high high
overall performance| good medium | medium poor poor medium poor

will review existing widely-studied ANN search algorithmsRP trees and spill trees is larger because the branching step
and then present the proposed approach. determining which child of an internal node is next visited,
requires an inner-product operation that consistsOgfl)
multiplications andD(d) additions while it costs onlg)(1) in

1.1 Related Work . KD trees. Therefore(, in high-dimensional problems(K)D trees
A comprehensive survey on ANN search algorithms can Bgya|ly achieve better accuracy than PCA trees and spits tre
found from [40]. We mainly present the review on tWGyjthin the same search time. In practice, KD trees are widely
categories: partition trees and hashing, which are wideBe aqopted for computer vision applications. A comparison of

in computer vision and machine learning. these partition trees is summarized in Table 1.
N Multiple randomized KD trees, proposed in [43], generate
1.1.1 Partition Trees more space partitions to improve the search performance.

The partition tree based approaches recursively splitphees In the query stage, the search is performed simultaneously
into subspaces, and organize the subspaces via a treaigtrucin the multiple trees through a shared priority queue. It is
Most approaches select hyperplanes or hyperspheres accehdwn that the search with multiple randomized KD trees
ing to the distribution of data points to divide the spacechieves significant improvement. A boosting-like alduorit
and accordingly data points are partitioned into subsets. Tis presented in [48] to learn complementary multiple trees
typical partition trees include KD trees [6], [17] and itSor further performance improvement. FLANN [34], which is
variants [3], [5], [43], box-decomposition trees (BD trd8), probably the most widely-used approach in computer vision,
PCA tree [45], metric trees (e.g., ball trees [33], vantagi@ip automatically selects one from multiple randomized KD dree
trees (VP tree) [56], random projection trees (RP tree),[1@nd hierarchical k-means trees according to a specific dstab
and spill trees [29]), hierarchical k-means trees [36]. @dthand finds the best parameters. Similarly a priority search
partition trees, such as Quadtrees [16], Octrees [55] and ssheme is also used in the query stage. The proposed approach
on, are designed only for low-dimensional cases. in this paper can also be combined into the FLANN framework
In the query stage, the branch-and-bound methodology [6] automatically tune the parameters. This is left for fatur
is usually adopted to search (approximate) nearest neighbavork.
This scheme needs to traverse the tree in the depth-firstenann
from the root to a leaf by evaluating the query at each infernk1.2 Hashing
node, and pruning some subtrees according to the evaluatimtality sensitive hashing (LSH) [11], one of the typical
and the currently-found nearest neighbors. The curreteg-stehashing algorithms, is a method of performing ANN search
of-the-art search strategy, priority search [3] or best-fi5], in high dimensions. It could be viewed as an application of
maintains a priority queue to access subtrees in order $o theobabilistic dimension reduction of high-dimensionakada
the data points with large probabilities being true neareBhe key idea is to hash the points using several hash fursction
neighbors are first accessed. to ensure that for each function the probability of collisio
Let us look at more details on KD trees, PCA trees, RB much higher for points that are close to each other than
trees and spill trees, all of which use hyperplanes to spiitose far apart. Then, one can determine near neighbors by
the data points. KD trees use a coordinate axis to form thashing the query and retrieving elements stored in thedisck
partition hyperplane. In contrast, PCA trees find the pgati containing it. Several followup works, such as LSH foredt [4
direction using principal component analysis (PCA) to forrand multi-probe LSH [31], improve the search efficiency or
the partition hyperplane, and spill-trees and RP treescseleeduce the storage cost. LSH has been widely applied to
the best one from a set of randomly sampled projectimomputer vision, e.g., for pose matching, contour matching
directions. Compared with KD trees, PCA trees, RP trees aadd mean shift clustering. A literature review could be fdoun
spill trees yield better space partitions and thus lead ttebe in [42]. LSH suffers from poor access order because the hash
order for visiting the points because the partition hypempk functions are achieved without exploiting the distribuatiof
are less limited and more flexible than those in KD treedata points and the points in the same bucket (with the same
However, in the query stage, the time overhead in PCA treéssh code) are not differentiated.
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Recently, a lot of research efforts have been devoted flgorithm 1 Partition tree construction
finding good hashing functions, by using metric learningi Prlo‘:??‘:)gein;’_?s’:'g?r:‘;;‘zfgotrr‘jgﬁﬁt pointList)
techniques, including optimized kernel hashing [20], hesl 2 return null:
metrics [22], learnt binary reconstruction [25], kerneliz 3. ese
LSH [26], and shift kernel hashing [39], semi-supervised, * Select the partition directon*
. . 4. direction<+ SelectPartitionDirection(pointList);
hashing [50], spectral hashing [53], and complementari-has /* Sort pointList and choose median as the pivot element */
ing [54]. Such approaches get better data partitions tham LS5.  select medianby direction from pointList;
as the hashing functions are learnt from the data, but stil {:egﬁjégn’;%‘fs and construct subtrees */
poorer data partitions compared with partition trees bseau 7. node.partitiondirection— direction;
the hierarchical way to partitioning data points in trees ha8.  node.partitionvalue— pointListimedian},
better capability to group the data points than the flat way il’?' Si(:;is..lefte PartitionTreeConstruct(points in pointList before me-
hashing methods. In addition, it still suffers from the db@ok 10, node.right« PartitionTreeConstruct(points in pointList not before
that the points in the same bucket are not differentiated. As  median);
a result, the access order is not satisfactory and the seaﬁh return node;

e . " end if
performance is in practice poorer than partition trees.

113 Others that in KD trees. Compared with PCA trees and k-means trees,
There are some other methods for ANN search, such @sr approach is much more efficient to locate NN candidates
embedding (or dimension reduction), neighborhood grapbecause the projection operation in our approach only resui
distance based methods and so on. LSH essentially is alscaaiparse operation that consists of a few addition or sutimrac
embedding method, and other classes of embedding methegerations while PCA trees and k-means trees conduct a more

include Lipschitz embedding [24] and FastMap [14]. Neighexpensive projection operation that includes an inner gbd
borhood graph methods are another class of index structiresperation.

neighborhood graph organizes the data with a graph steictur

connecting nearby data points, for example, Delaunay graph pDeginiTION

in Sa-tree [35], relative neighborhood graph [47], akd ) , . L . .

NN (R-NN) graph [41]. The combination with KD trees!n this section, we give a brief introduction to partitioees
shows promising performance [51]. The disadvantage ofetho%nd partition fu.nct|ons, and d_efme the trlna_ry-pr(.)Ject[hmc.-
neighborhood graph based methods lies in quite expensﬂ%‘ that combines the coordinate axes using trinary weight

computation cost for constructing the data structure. Toice

the computation cost, an algorithm of building an approxena2.1 Partition Tree

neighborhood graph is developed in [52]. A partition tree is a tree structure that is formed by remaetlgi
splitting the space and aims to organize the data points in
a hierarchical manner. Each node of the tree is associated

. ] ] ~_with a region in the space, called a cell. These cells define
In this paper, we aim to improve the hyperplane-based artit 5 pierarchical decomposition of the space. The root noite

trees for ANN search. The key novelty lies in designing gssociated with the whole set of data poitsEach internal
trinary-projection treé to well balance search efficiency anthodew is associated with a subset of data poiats that lie
search effectiveness, i.e., the time overhead of acce$S&\g i, the cell of the node. It has two child nodasit(v) and
points and the order of accessing them. We use a combinatigh) (), which correspond to two disjoint subsets of data
of a feV\{ coprdlnate axes we|gh_ted yor —1 (gquwalently POINS Xiest(v) AN Xiigne (- The leaf node may be associated
a combination of all the coordinate axes weighted DY) ith 4 subset of data points or only contain a single poine Th
or —1), called trinary-projection direction, to form the parpseydo-code of constructing a partition tree (with hypenps
tition hyperplane. We propose a coordinate-wise enun@rati,, space division) is presented in Algorithm 1.
scheme b_ased on .the_maX|.murr.1 variance criterion to effigient! e key problem in constructing partition trees is to find
pursue trinary-projection directions, guaranteeings&atiory 5 partition function for each internal node. For approxienat
space partitions. o o nearest neighbor search, the partition function detersnifie
Thanks to trinary-projection directions, our approach ige space is well decomposed and accordingly affects the
superior over current state-of-the-art methods. Compaitf  orqer of accessing the points. On the other hand, the time
KD trees, our approach is more effective to find partitiogomplexity of evaluating partition functions determinés t
hyperplanes and hence more effective to locate NN candksarch efficiency because traversing the tree involvesiéinec
dates because the trinary-projection direction is capable 5 |ot of branching operations in internal nodes for which we

generating more compact data partitions. The overall tiged to evaluate the partition functions.
cost of evaluating the same number of leaf nodes does not

increase much because the time overhead, the time costz%f Linear Partition Function
branching that includes projection operations, is compar®m

1.2 Our Approach

The partition function can generally be written g$x; 0)
1. A short version appeared in our CVPR2010 paper [23]. with © being function parameters. Depending on the function
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design, partition trees can be categorized into binaryitjmart .
trees, including KD trees, PCA trees, RP trees, VP trees and
so on, and multi-way partition trees, including hierareik-
means trees, quadtrees and so on. This paper mainly focuses|o .
binary partition trees. The partition function for KD tre@CA
trees, and RP trees, is essentially a linear functfds; ©) = *
f(x;w,b) = wi'x — b, wherew is the projection direction .
(also called partition direction) antl is the partition value.
The space is partitioned by the hyperplafig; w,b) = 0. To
determine which of the two sides a particular point lies oa, w @) (b)
simply evaluate the sign of the partition function valuelsd t Fig. 1. lllustrating a KD tree and a TP tree in the 2D
point. The evaluation of such a partition function gengrall

. L . - space. Using a KD tree, coordinate axes are directly
requires O(d) multiplication operations and)(d) addition used to formulate the projection directions to partition

operations. Particularly, its evaluation in KD trees is 'h"ucthe space, as shown in (a), while using a TP tree the

cheaper and costs oniy(1), independent of the dimensiah space can be partitioned more flexibly and can be like
because only one entry #r in KD trees is1, and all the other the partitions shown in both (a) and (b).

entries ard). In VP trees f(x;0) = f(x;c,7) = |[c—x|[2—7.
In this paper, we study the linear partition function and aim
to find one function that is able to generate compact spagg,

exllw|l3'wTx] is the variance of the projections along

partitions and can be efficiently evaluated. the normalized directiofjw||; ' w.
Partitioning along the projection direction with a large
2.3 Trinary Projection variance is known to be a competent method to partition

The main idea of trinary projection is to make use of a Iinegr]e data [6], [17], [45]. Consider two projection direction

L . . . ) p1 and p, with variancesc; and ¢;, wherec; > ¢y and
combln_atlon of_coordlnat_e_ axes W'.th trinary-valued wesglot c1 is the largest variance. The larger variance over the data
determine the linear partition functiof{x; ) = f(x;w,b) =

T - T g points corresponding to the two partitions resulting frpgis
Zvr Xl ig C:j;ed V:h;[r&”;r Irl)(;'ect?gﬂ dirvg:r;i(% ger}llggo?t%e likely to be close tac;, while that resulting fromp; is likely
ad ;nta es is that it tak y-proj addition (s .btract'on) - to be much smaller than,. As a result, the two partitions

v ges| ! €X[w o) ~ u ! P~ obtained from the projection direction with a larger vadan

_?_Lat'onf' t% evalut?t¢(r>]<;6), Wh'ct:rr: IS computa:::onall;:j_c:hea?.thend to be more compact, and thus, roughly speaking, the
roee\(/:ili(l;r? vgﬁjnes ?)fcthoeser(])iifs a?o?e?hneorro'zc?oen Igirr]nrcl;t fstances between the points within one partition are &mall
Proj P 9 proj on average. On the other hand, as pointed out in [45], the

w ball centered at the query point with the radius being the

Moreover, trinary projection Is gble to producg MOTE COMYistance to the current best nearest neighbor interseets th
pact space partitions compared with KD trees using cootelin artition hyperplane formed by the projection directiorthad

axes to directly form the partition hyperplane because tI ger variance less often, and hence fewer nodes aredvisite

partition ffllmc.g?n f_?_;]med fr_omt_the ;r_lna;y—prqjec;(tgntelotlon traversing the tree on average. Based on the above ratjonale
IS more Texible. 1he projection direction in rees Car%/e adopt the maximum variance criterion to determine the

bel retgarded as a d_spetmal 'Frlnary-proljectlon dliecltlo'r;,yo artition function. We would like to remark that other crite
selecting one coordinate axis, equivalentlyy||o = 1. An _may work well in some cases.

illustration of partitioning with a KD tree and a TP tree is
shown in Figure 1.

3 CONSTRUCTION

The procedure of constructing a principal trinary projecti
tree is described as follows. It starts from the root that is
A principal trinary-projection treeis a partition tree, in associated with the whole set of points, and divides the
which the directionw used in the partition function is the points into two disjoint subsets using a partition function
principal trinary projection direction that leads to corapa each corresponding to a child node. The process is reclysive
space partitions. The principal trinary-projection difee p  performed on each new node and finally forms a tree, in
is a trinary-projection direction along which the varianmfe \yhich each leaf node may contain a certain number of points.
the normalized projections of the data points is maximizegthis procedure is almost the same to that for constructing a

2.4 Principal Trinary-Projection Tree

The mathematical formulation is as follows, KD tree, and the only difference lies in the partition functi
_ construction.
b= arggg%h(w) (3) Finding the optimal principal trinary-projection diremti,
:argmaXV&rxege[HWHElWTX]v (2) i.e. solving Equation 2, is a combinatorial optimization
weT problem, wrlich might be NP-hard. The solution spdEe
3°-1

where 7 is the whole set of trinary projection direc-consists of>5— elements, which grows exponentially with

tions, X is the set of the points that is to be split, andespect to the dimensiolh We can simply turn the problem
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into the problem of maximizing the joint probability over gh!9orithm 2 Coordinate-wise enumeration

; i ; ; ; /* D: the dimension; topD: the number of used coordinate axethe
Markpy random field, and then optimize it using the iterated threshold of the ratio between the variance of the best titre@nd the
Cor_‘d|t|0nal modes approach [7] or O_ther approal‘CheS' such as maximum variance gain; topK: the number of directions kepeach
belief propagation. However, the weights are highly codple enumeration; */

together, making those solutions unsuitable. Procedure CoordinatewiseEnumeratidist. pointList)
. - . . /* Compute variances for all coordinate axes */

In the following, we first present a coordinate-wise €nu-1. axesvariances| - - D] + ComputeVariances(pointList);
meration algorithm to find an approximate principal trinary ) I Ref_lorg\;h? pOSSIbcl:e maleélm \(/aﬂan\;?e lgalné*/[ )

. . . . . : . . remainedVariance— ComputeSum(axesVariancesy- - )
prOjgcthn d|_rect|on. The_n we give a brief review of the ™ . Sort the axes in the variance-increasing order */
cardinality-wise enumeration algorithm proposed in [22st, 3. c[1-.. D] « SortAxes(axesVariances - - D]);
we propose an extension to multiple randomized principag- directions« 0;

trinary projection trees. - bestDirection«— null;

6. 1 < O;
7. while (: < topD and directionVariances(bestDirection) / remainedVa
ance< r) do
3.1 Coordinate-Wise Enumeration 8. i+ i+1;
9. directions<— MergeEnumerations(directions, directions +]Clirec-
One can decompose the problem formulated in Equation 2  tions - Cf]);
into a sequence of subproblems{Pl, e Py ,Pd}- The 10. directionVariances<— ComputeVariances(directions, axesVariances
subproblemp; is defined as follows, E*l Keel;]z(’)pK directions */
11. directions« Prune(directions, topK);
max h(w) (3) 12.  bestDirectionk— FindMaximum(directions, directionVariances);
. . /* Update the possible maximum variance gain */
s.t.w; =0,Vj € {l +1,-- 7d} (4) 13 remainedVariance— remainedVariance - axesVariances{[
weT. (5) 14. end while

15. return bestDirection;

It can be easily validated that the subprobl&mis equivalent
to the problem in Equation 2. Intuitively, the subprobldin .
only exploits the firsti coordinate axes to form a trinary-of the problem P Is lower bounded:maxwe7; h(w) >
projection direction. We denote the feasible solution®pby maxwer, h(w) — >, h(bj).
a set7;, where7; = {w||E;w|; = 0,w € T} andE; is a
diagonal matrix with the firsi diagonal entries being and
the remaining diagonal entries beimg
It is apparent thaff;_; C 7;. LetU; = T; — T;—1. From
initi _ . _ , j=it+1 :
thle dffm't'on'uz (;"fm be gr?nera'ged froﬂia_l,lxtll—_{wmde tfor any i € {1,---,d — 1}. This implies that the
{1, -1}, woe; € Ti—1}, whereo IS a coordinate-wise proauct,, yor hound of maxye s h(w) for B* is not less than
operator andle;||y = d — 1 and itsi-th entry is equal to O. : P
i . that of maxycy h(w) for B, ie., maxyer, h(w) —
Intuitively, for each solutionw € 7;_1, we can setw; to be d hbE) > i L d hbY). In oth
1 and —1 to form U;. This suggests that we incrementall);jziﬂth( 7) o mlax“’eﬁ g") fthzj:iﬂtl t(t J‘l;;k E 0 tﬁr
enumerate the feasible solutiofis in order of increasing words, the optimal Tesult ofs with respect 1o as the
from 75 to T, which is called coordinate-wise enumerationlargeSt lower bound, and hence is potentially a better mwiut
S L . . - . This suggests an optimal coordinate-wise enumeratiomsehe
earching for the true principal trinary-projection diie exploiting the coordinate axes in order of decreasing vaga
with this incremental enumeration manner still requires E/?/h?ch isgable to find better solutions quickl 9 '
d . . . . .
check all the2==! feasible solutions. The expensive time : . : q Y-
2 In the optimal coordinate-wise enumeration scheme, we
have a property how the solution &f approximates the global

cost makes it impractical to find the optimal solution. laste
principal trinary-projection direction (the one &f;) as stated

Let us consider ordered coordinate aés= {bj, ..., b}},
a permutation of{bi,...,bg}, where h(b}) > --- >
h(b}), and another permutatio®’ = {bf,...,b}}. We
can easily prove thaty * h(b%) < Z;l:iﬂ h(b’)

we are willing to settle for an approximate principal tripar
prOjgctlon d|re_ct|on, and gnumer_ate a subset of possititgibe in Corollary 1, which is derived from Theorem 1.
feasible solutions coordinate-wisely. We show that there i
an optimal order of exploiting coordinate axes to form th€orollary 1. The variance deficiency, i.e., the difference of the
feasible solutions. Moreover, we analyze the performaneariance along the principal trinary projection directiofor

of our approximation algorithm by providing proper uppethe subproblen®; from that along the global principal trinary-

bounds of the difference between the approximate solutiprojection direction, is upper boundednaxycr h(w) —

. . d %
ang the.;purﬂzil SOL;JIIOI’E).l <r -~ o maxwe7+ h(W) < 325, h(b}).

onsider thel subproblemd P, --- , P;}. It can easily be . - . .
validated thatmaxwer h(w) < maxwer, h(W) < --- < This corollary indicates that we can avoid an expensive

maxwer, h(w), SiNceT, C T C --- C Tq. In addition, process of computing the global_ solution and o.nly conduct
- h(w) is | bounded. which i . a cheap proces)(d)) of computing the summation of the
weT: h(w) is lower bounded, which is stated in the . :
; yariances over all the coordinate axes to estimate the &ppro
following theorem. The proof of the theorem can be foun ! : .
from the supplemental material imation degree. This suggests that we can early terminate th
' enumeration at the proble; if the deficiency upper bound
Theorem 1. For coordinate-wise enumeration with the orderZ‘;:iJrl h(b%) is small enough.

of coordinate axesB = {by,...,by}, the optimal result  The early termination scheme reduces the time cost from
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0(3%) to O(3%) if the enumeration process stops at the prob- The simple approach for constructing a randomized TP tree
lem P; for which the variance deficiency is small enough ois to randomly sample the weighte. For example, one can

d reaches a fixed number. But the time cost is still expensigample the weighi; for each coordinate axis frof-1,0,1}

To reduce the cost furthermore, we introduce a practicaith probabilities{p_1, po, p1}. The probabilities could be the
coordinate-wise enumeration scheme. Let us compare g@me,p_ | = pg = p1 = % Or they can be computed from a
number of the feasible solutior(g, ; and7;, for subproblems Gaussian-like distributiop, o ;2 exp(_%), wherea =

P, and P,, respectively. We have thafi| = |7, UUi| = —1,0,1 ando is used to adjust the weights, further normalized
|7i—1]+[U;]. This suggests a speedup algorithm by generatigg thatp_, + p, + p1 = 1. The latter one can be regarded
a smaller sely;. Recall that/; = {w | w; € {1,—-1},w®e; € as an approximate to the random projection tree [10]. One
Ti—1} and|U;| = 2|T;—1|. We use a subset §F_; to formi/;.  drawback is that those approaches are independent to the dat
Specifically, we select a small numbey) (Of leading trinary- distribution. Instead, we propose to modify the coordinaise
projection directions with the largest variancés. 1, to form  enumeration scheme to generate randomized multiple TB. tree
Ui = {wlw; € {1,-1},w© e; € T—1}. In this way, the  One candidate scheme is to randomly sample one from
time complexity is reduced from an exponential @dg3“) to  several top candidate principal trinary-projection diits

a polynomial one)(gd). The pseudo-code of coordinate-wisgollected from the coordinate-wise enumeration schemis Th
enumeration is presented in Algorithm 2. straightforward scheme is however time-consuming for gene
ating multiple trees. Instead, we propose a coordinate-wis
random enumeration scheme to sample a principal trinary-
projection direction, which may result in lower search dyal
We give a brief review of the approach presented in [23]. ORgy 3 single tree, but can still guarantee high search qualit
can decompose the problem of maximizihgw) into a se- que to the complementarity of multiple trees.

quence of subproblem$ /s, - - -, Py}, whereP; corresponds e permute the coordinate axes in order of decreasing
to maximizingh(w) subject to||w||; < ¢ andw € T. It can variances,b}, - - - ,b%, where h(b%) > --- > h(b%). The

be easily validated that the subprobléis equivalent to the coordinate-wise random enumeration scheme is described as
problem in Equation 2. We denote the feasible solutions@f thy|iows. We first randomly sample a coordinate axis fromdhe
subproblemP; by 7; = {w | [[w|1 <i,w € T}. It can be |eading coordinate axes, forming a trinary projection cfin
easily shown thaf; = 7,1 Ul; with U; = {w | |[w|l1 = i}. | for the first iteration. For discussion convenience, we as-

3.2 Cardinality-Wise Enumeration

U; can be easily generated fra_,, U; = {w | |[w —w| = sumev, = b. Then, we sequentially consider the remaining
1,3w € U;—1}. This suggests the so-called cardinality-wisgggrdinate axe$b}, -+ ,b3_;, b3, -+, bi}. We denote the

enumeration scheme, enumerating the feasible solutionstifary-projection direction by, at thet-th iteration. For the
order of increasing the number of the coordinate axes thaf.1)-th iteration considering the next coordinate axjghere

are used to form_the partition fu_nction. are three candidates fot, 1, C; = {v;,v; +b,v; — b}. The
Instead of solving the expensive problefy, the approach sampling weight for each candidates C; is computed from
in [23] solves the subproblemR; to get an approximate solu-pe variancesp(c) = "9 nour implementation, we

: : : > wee, h(w)
tion. Here we present Theorem 2 to show the approxmau%'lmd that the coordinatee axes with small variances cauteib

qua_1I|ty of th? approximate solutiof;, compared with the little to space partitioning and add a little more time costhe
optimal solution. The prc_)of of the theorem can be found fro'a]uery stage. So we stop the iteration when thedapordinate
the supplemental material. axes have been considered.

Theorem 2. For cardinality-wise enumeration, the optimal
result of the problen®; is lower boundedmaxwe7, h(w) > 4  ANALYSIS
maxweT; h(W) — Z?:.d;l h(b}), where {by,...,b3} is @ 4.1 Construction Time Complexity
permutatlgn of coordinate axegby, ..., ba} and h(b) > The computation required to find the partition function for
-+ 2 h(by). a nodev associated witm,, points is analyzed as follows. It
The approximate solution reduces the time cost from &ensists of the computation of the covariances and the erume
exponential ong)(39) to a polynomial oneD(d?), which is ation of feasible trinary projection directions. Compagtithe
still very large. A further approximation method is intraxhd  variances for all thel coordinate axes requir€3(dn,) time,
in [23]. In that method, we select a small numbel) of and computing the covariances for the moordinate axes
leading coordinate axes with the largest variances and keeguiresO(d?n,) time. The enumeration cost is independent
only g trinary-projection direction candidates, to forty, of the number of points and only depends on the number of top
which results in small time cosb(gd?). coordinate axesd, denoted byO(e;), which will be analyzed
in detail later. The above analysis indicates that the tios c
) , for the nodev includes two partsO(e;) andO((d + d*)n.,).
3.3 Multiple Randomized TP Trees Consider the first part, there a@(n) nodes in the tree,
We propose to make use of multiple randomized TP treesttten the time cost contributed by the first part@gne;).
organize the points. It has been shown that the simultaned@@nsidering the tree built in the case of using the median as
search over multiple trees through a shared priority queuetlie partition value is a balanced tree with the heigghtn
superior to the priority search over a single tree [23], [43] and the number of points in each levelristhe time cost for
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each level contributed by the second parOif{d + d?)n). In  Algorithm 3 Partition tree query

summary, the total time cost 8(n((d + d?)logn + ey)). Procedure PartitionTreeQueryRoint g, treeNoderoot)
Let us look at the enumeration cos. Coordinate-wise ; fg'oé'lgn?é‘st“ﬁgé‘:f%ot_

enumera}tion totally generate@(gd) candidatg directions, 3 togaememjdistanc& 0:

whereg is the number of the candidate directions generated. minDistance«— INF;

for each enumeration iteration. Evaluating the variance op- accessedPointNumber = 0; . .
= /* maxAccessedPointNumber: the maximum number of accgxsats

each one using an incremental manner tak¥g) time. %
Thus, coordinate-wise enumeration takes= O(gd?) and 6. while accessedPointNumbet maxAccessedPointNumbelo
; Wi ; 72 /* Descend down to a leaf node */
coordinate-wise random enumeration tak&gl*). 7. while topElement.node.JsLeaf() = falsi
8. left +— topElement.node.left;
4.2 Storage Cost 9. right < topElement.node.right;

) ) ~10. direction<+ topElement.node.partitiondirection;
The tree structure needs to store the data points and partitiL1. value< topElement.node.partitionvalue;
functions for internal nodes. Generally, a partition fimat 12 projection«— g along direction;

L . if (projection< value)then
needs_O(d), e.g., fgr PC_A—trges_and random projection trees, topElement.node- left;
The trinary-projection direction in our approach is spaesel 15. newElement.node- right;
only costsO(d). The total storage cost i©(nd + mnd) for 16 else .
. . . topElement.node- right;
m trees, whereud is the cost for storing the features of datag newElement.node— left:
points. 19. end if
/* Estimate the lower bound of the distance of the query to the
cell */
4.3 Search Time Complexity 20. newElement.distance— topElement.distance + (projection -
. . . . valuef/||directior||;
To find approximate nearest neighbors of a query point, a topr. queue.insert(newElement);

down searching procedure is performed from the root to tt&2.  end while

leaf nodes. At each internal node, it is required to inspegf- ~ accessedPointNumber accessedPointNumber + 1,
. . L. . . . currentDistance— ComputeDistance(topElement.node.point, q);
which side of the partition hyperplane the query point lieSs it currentDistancec minDistancethen

in, then the associated child node is accordingly accessed. minDistance«— currentDistance; ‘
The descent down process proceeds till reaching a leaf nogé. d“ﬁareStNe'ghbo‘— topElement.node.point;

The data point associated with the first leaf node is the firsh  (opElement— queue.top();

candidate for the nearest neighbor, which is not necegsar#o.  queue.pop();

the true nearest neighbor. It must be followed by a proceﬁ : %?Jrv::h”niarestNeighbor'

of iterative search, in which more leaf nodes are searched fo_ i

better candidates. The widely used scheme with high chances

to find true nearest neighbors earlypsority searchso that

the cells are searched in order of increasing their dismné DisCcussioN

to the query point. The ANN search terminates when a fixédl Embedding vs. Space Partition

number of leaf nodes are accessed. The pseudo-code of |iigetric embedding, if we project the data points to ran-
search procedure s presented in Algorithm 3. domly sampled trinary-projection directions (this is atsdled

In the f_oIIowmg, we show the time cost for ANN SearCrblatabase-friendIy random projection [1]), the distortioh
by boundmg_the num_bq of accessed _Ieaf nodes. Accessifg embedding is very close t (all pairwise distances are
a leaf node in the priority search requires the descent fr roximately preserved). This is guaranteed by the tieore

an |rr1]terEa(1I) node to this Ileaf gode, thedr:_ the deace_znt N€&(Y1], which is an analogue of the Johnseindenstrauss
to dC ec .(log?)hmternla no esf. hHan Ing eag_ INterNaje ma for random projectionSiven a sett of n points in
node consists of the evaluation of the corresponding it pi " an - 5 ~ 0, let ko — 2% logn and k > ko. Let

function, computing the lower bound of the distance to tHe ce -

that is to be inserted to the priority queue, and the insertigf (x) = LERTX, where R is a matrix of sized x k. The

and extraction operations on the priority queue. The ewalna entry r;; 1s sampled from{1, 0, -1} with the corresponding

of the partition function costs onl§)(d). Using the binomial probabilities{%, 2, £}. Then, with probability at least—n 7,

heap for the priority queue, it takes amortizéd1) time to (1 —&)|jx; —x2||3 < || f(x1) — f(x2)[13 < (1 +¢&)||x1 — x2|3
insert and extract a cell. In our experiments, we implengntéor all x;,x5 € X.

the priority queue as a binary heap. Theoretically, thertitse In this paper, we use the trinary-projection directions for
operation may take)(logn) time with a binary heap, but partitioning the data points rather than for metric embeddi

we observed that they took onl9(1) time on average. The Assume that the tree is formed by adopting the same trinary
computation of the lower bound of the distance of a queprojection for the nodes in the same depth. As the goal, the
to a cell costs onlyO(1) time. Therefore, assuming that ongoints lying in the same subspace (cell) generated by tlee tre
leaf node contains only one data point, the time cost whane expected to be compact in the embedding space. According
accessingV leaf nodes isO(Ndlogn + Nd), where Nd is  to the above theorem that indicates that the distances deahpu
the cost of computing the distances between the query and tiver the embedding space can approximate the distances
data points. computed over the original space, it can be expected that
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those points are likely to be compact in the original spacef TP tree is apparently much larger than that of KD tree,
This implies that the points in the same subspace are venyd the principal trinary-projection direction is an appnoa-

likely to be near neighbors and in other words a query poition of the principal direction, which is not worse than the
lying in a subspace can potentially find the nearest neighbapproximation using any coordinate axis. Although it remsai
from the subspace. To obtain a better distance approximatianclear if TP tree adapts to low dimensional manifolds, our
the projection direction of each internal node can be eséitha experiments show that our approach can produce good space
adaptively from the points associated with the node, diiingr partitioning that leads to better order to access data goint

the constraint of using the same trinary-projection dicector

the nodes with the same depth. 5.5 Approximate and Exact NN Search

- The proposed principal and randomized TP trees can also
5.2 Partition Value be applied to answer exact NN queries if the orthogonality
Let us discuss the choice of the partition vabie the partition condition holds. The priority search can be terminated when
function f(x; w, b). The partition value is usually determinedhe minimum distance lower bound in the priority queue is
according to the projection values. Several choices, sschlarger than the best distance found currently, and thus ke b
mean, median and bisector, have been discussed in [45]. INN found so far is the exact NN. Al + ¢)-approximate NN
shown that selecting the median value as the partition yalugan be also found when the minimum distance in the priority
resulting in a balanced tree [17]. However, it should be dotgueue is larger thafl +¢)dmin, Wheredmi, is the best distance
that there is no guarantee that one choice will always gémergound so far. We have a theorem far + ¢)-approximate NN
the optimal search performance in all cases. A learningdassearch over an orthogonal TP tree given as follows. The proof
approach is proposed in [9] to determine the partition valugan be found from the supplemental material.
In our experiments, we find that adopting the mean as th% . U
partition value (the resulting TP tree is nearly balancedun Theorem 3. Con5|de_r a sett .Of (_Jlata points _mR indexed
experiments) produces similar (better in some cases) leay an orthog.onal trinary projection trQee\./EG:lven a con.stant
results and takes less construction time. ¢ > 0, there is a constanty. < [1+ =], wherea is
the largest of aspect ratio of any cell, such thafla+ ¢)-
approximate nearest neighbor of a querycan be reported in
5.3 Orthogonal TP Tree O(dcq - logn) time, and a sequence &f(1 + ¢)-approximate
The priority search procedure relies on maintaining a fiyior nearest neighbors of a quetycan be computed i®(d(cq, +
queue so that we can access the cells in order efficiently. Thdogn) time.
lower bound of the distance of the query to the cell that is pos .
. . o The lower bound of the distance between the query and
sible to be accessed next is used as the key to maintain the BIL el mav not be tiaht enouah. and hence the performance
ority queue. The exact lower bound requires the computatio y 9 gn. P

between a point and a hyperpolygon, which is generally timglf:I exact NN and(1 + e)-approximate NN search is not

. : ; , atisfactory. As a result, ANN search within a time budget
consuming. As pointed in [2], the computation can be muc . . N

Lo L - IS practically conducted, equivalently terminating theursé
more efficient if the projection directions along each patimf . )

. when a fixed number of data points have been accessed.

the root to a leaf node are parallel or orthogonal, which wie ca
the orthogonality condition To make an orthogonal TP Tree,
i.e., a TP tree satisfying orthogonality condition, we néed 6 EXPERIMENTAL RESULTS
modify the enumeration scheme by checking if the candidaie; pata sets

direction is orthogonal to or parallel with all the projexti )
directions of its ancestors, which results in an increasthef Caltech. The Caltechl01 data set [15] contains abo@600

time cost by alog n factor. In our experiments, we find thatMmages and has. been widely used for image classification. We
ANN search is still very good without any performance losgXtract the maximally stable extremal regions (MSERs) [32]

even if the orthogonality condition does not hold. Therefor 0" €ach image, and compute 12s-dimensional SIFT fea-
we simplify the implementation by intentionally ignoringet 1€ [30] for each MSER. On average, there are abiot
orthogonality condition and compute an approximate lowat'F T features for each image. In this way, we get a data
bound by directly accumulating the distance to the partitic€t containing around000X" SIFT feature points. In our

hyperplane with the distance lower bound of its parent nodgXPe€riment, we randomly sample000K" points to build
the reference data set. To formulate the query data set, we

. . . ) randomly samplel00K points from the original data points
5.4 Adaptation to Low Dimensional Manifold and guarantee that these query points do not appear in the
Space partitioning is one of key factors that affect the oade reference data set.
accessing the data points and determine the search efficietukbench. The recognition benchmark images [36] consist of
It is shown in [49] that PCA tree can reduce the diameter @650 groups of4 images each, most of which are about CD
the cell in a certain ratio given the low covariance dimensiaovers, indoor images and similar or identical objectsemak
assumption, while KD tree cannot adapt to low dimensionat different views. The images are all of si@¢0 x 480. We
manifolds. With regard to the maximum variance criteridig t also extract MSERs and represent each MSER witl2&
principal direction in PCA tree is the best. The solutioncga dimensional SIFT feature. We randomly sampl®0 K SIFT
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TABLE 2
The description of the data sets used in our experiments.

Caltech | Ukbench | Notre Dame| Oxford | Tiny images| PCA tiny images
dimension 128 128 128 128 384 64
#(reference points)| 1000K 1000K 400K 10M 1000K 1000K
#(query points) 100K 100K 60K T00K T00K 100K

—— Coordinate-wise enumeration] 45| [—Nove Dame]
350 —— Cardinality-wise enumeration| — Caltech

features for the reference data set, andK SIFT features as
queries. o

Notre Dame. The patch data set [21], associated with the'jjj
Photo Tourism project [44], consists of local image patatfes
Flickr photos of various landmarks. The goal is to compute
correspondences between local features across multiple im @ () ©

ages, which can then be provided to a structure—from-moti%_ 2. Construction cost. (a) and (b) show the compar-
algorithm to generat8D reconstructions of the photographegss for construction cost (seconds) vs. different num-

landmark [44]. Thus, one critical sub-task is to take afor of axes using coordinate-wise enumeration and
input patch and retrieve its corresponding patches within acardinality—wise enumeration over Notre Dame and Cal-

other images in the database, which is essentially a larggzp () Construction cost vs. different numbers of trees
scale similarity search problem. We usg0 K image patches ¢,. .qordinate-wise enumeration

(represented by d28-dimensional SIFT feature) from the
Notre Dame Cathedral as the reference data set Gaxid
image patches as queries. 6.3 Empirical Analysis

Oxford. The Oxford5K data set [38] consists Gf062 high e present empirical results to show how various factors in

16 M SIFT features extracted from those images. We randomly

samplel0M/ features as the reference data set and dib@K 531 cConstruction Cost
features as queries.

6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16
number of axes umberofaxes . numberof f trees

. o . . Figure 2 reports the time cost of constructing trinary progn

Tiny images. The tiny images data set consistssof million  yrees when varying the number of used axes and the number
images, introduced in [46]. The sizes of all the images i yrees. From Figures 2(a) and 2(b) (one TP tree is buil, on
this database arg2 x 32. Similar to [26], we use a global 5 see that the construction cost using more axes becomes
GIST descriptor [37] to represent each image, which is|gqer, which conforms to the complexity analysis. In tewhs
384-dimensional vector describing the texture within loceliz e construction cost, the coordinate-wise enumeratiberse

grid cells. We randomly samplé000K" images to build roh0sed in this paper is better than the cardinality-wise
the reference data set and oth@0K" as queries from the oymeration scheme that was used in [23]. From Figure 2(c)
remaining images. We also generate a data set, PCA t{yayes are used), we can observe that the time taken by the

images, which is produced by reducing the dimension of thigorginate-wise enumeration scheme increases lineatly wi
GIST feature taG4 using PCA. respect to the number of trees.

The description of the data sets is summarized in Table 2.

All the features are byte-valued except that the features@m3.2 Coordinate-Wise Enumeration vs. Cardinality-
PCA tiny images are int-valued. Wise Enumeration

We conduct experiments to compare the search performance
over TP trees constructed using different enumerationrsebe
with the same parameteré,= 15 leading axes used, = 15
trinary-projection directions kept in each enumeratiarat

We use the precision score to evaluate the search qualftgn. and1 NN searched. From the comparison shown in
For k-ANN search, the precision is computed as the ratfggure 3, we can see that_the coordinate-wise enumeration
of the number of retrieved points which are contained in trfR¢heme performs the best in terms of both search efficiency
true k nearest neighbors th. The true nearest neighbors ar@nd precision, which is consistent to the previous analysis
computed by comparing each query with all the data poirfi@ndom enumeration means randomly sampling the trinary-
in the reference data set. We compare different algorithyns Brojection directionw and the partition valué. Considering
calculating the search precisions given the same seara tifi€ 1€ss construction time using coordinate-wise enunoerat
where the search time is recorded by varying the number '$€ choose it in the implementation.

accessed data points. We report the performance in terms of

search time vs. search precision. All the results are obtairf-3-3 Dominant Axes

with 64 bit programs on &.4G Hz quad core Intel PC with We present the results to show how the number of axes used
16G memory. to form the projection direction for each internal node eiffe

6.2 Evaluation Metric
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Fig. 3. lllustrating search performance using coordinate- Fig. 5. lllustrating search performance when using dif-
wise enumeration and cardinality-wise enumeration in ferent numbers of trees over (a) Notre Dame and (b)
terms of precision vs. average query time (milliseconds) Caltech.

over (a) Notre Dame and (b) Caltech.

Vantage point tree. A vantage point (VP) tree [56] is a binary

spatial partition tree that at each internal node segregiata

points by choosing a position (the vantage point) in the spac

and dividing the data points into two partitions: those et
aes nearer to the vantage point than a threshold, and thoserthat a
e not. The priority search is also used as a speedup trick in the
— R implementation.

D aemgeqeyime © ° * 0 P aengequeyime Spill tree. The spill tree [28] is a type of random projection
(@) (b) tree. It generates the projection direction randomly. A key

point of spill tree is that it allows overlapping partitioasound

the separating hyperplane. We implement the algorithm by

following the description in [28].

Box-decomposition tree. This box-decomposition tree,

the search performance. The comparisons, obtained when gﬂ%”‘?d a;d.ED ttreejth[B], m:_)dlﬁes thet_ KD t;ree _malnly n
TP tree is used, are presented in Figure 4. There are sev igp !N addition o € Splitling operation, there 1S a more

. . gﬁneral decomposition operation called shrinking for spac
observations. Using more axes boosts the performance, (rjtitionin More details can be found from [3]. We repw t
the improvement is even more significant especially whéift 9. : P

the data is in high dimensions as shown in Figure 4(b). TH perimental results by running their public implememtati

performance improvement becomes less significant when 'éh a slight modification making the search proceed till a

number of used axes becomes larger iIxed number of points are accessed.
' FLANN. FLANN [34] is a combination of multiple random-

ized KD trees and hierarchical k-means trees. It seeks tbie be

6.3.4 Multiple Randomized Trees ] : )

. . . anﬁguratlon between them. We assume that its performance
This part presents experimental results to show using mul- ; .

) . o IS better than the performances of KD trees and hierarchical
tiple randomized trees can lead to significant performan&e

. . . . -means trees, thus we only report the results from FLANN.
improvements. Figure 5 illustrates the comparisons aver y rep

2, 4, 8, and 16 trees with 15 leading axes used for treeHashlng. We also compare the performance with the hashing

. : methods, E2LSH [11], multi-probe LSH [31], LSH forest [4],
construction. As we can see, the performance with more trees : . .

. L . L and spectral hashing [53]. The key idea of LSH is to hash
is better. The precision improvement is quite significanewh

taking less query time. With more query time, the preCiSiOtﬁe points using several hash functions to ensure that fdr ea

1

0.95
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©

precision
o
®
&
precision

—laxis 04
——5axes
——10 axes
15 axes 03
——20 axes

4
®

S}
~
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N

Fig. 4. lllustrating the performance of using different
numbers of axes over (a) Notre Dame and (b) tiny images.

) S unction the probability of collisions is much higher forjebts
improvement becomes less significant. We can also see tha

hat are close to each other than for those that are far apart.
the performances of trees andl6 trees are very close.

Then, one can determine near neighbors by hashing the query
point and retrieving elements stored in buckets contaittiag

6.4 Comparisons point. It has been shown in [34] that randomized KD trees can
We compare the search performance of our approach withtperform the LSH algorithm by about an order of magnitude.
state-of-the-art ANN search algorithms. Multi-probe (MP) LSH is built on the LSH technique, but it

PCA tree. The PCA tree [45] is a binary spatial partition treéntelligently probes multiple buckets that are likely tontain

that chooses the principal direction as the projectionctive query results in a hash table. LSH forest represents ea¢h has
at each internal node. It can yield compact space partitioable by a prefix tree so that the number of hash functions per
However, the projection operations at the internal nodes daable can be adapted for different approximation distances
very time-consuming, as it requires an inner product opmrat Spectral hashing aims to learn the hash functions according
that takesO(d) time. Consequently, the search performance ie the data distribution to build an effective hash table. As
deteriorated. The priority search is used as a speedupitrickhashing methods are slower than our approach by about an
the implementation. order of magnitude, we report the comparisons with hashing
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Fig. 6. Performance comparison over 1000K 128-dimensional features from Caltech. (a) 1-NN, (b) 5-NN, (c) 10-NN,

(d) 20-NN, (e) 50-NN and (f) 100-NN.

based methods separately for clarity.
We first report the results of searchingNN, 5-NN, 10-
NN, 20-NN, 50-NN and 100-NN on three data setg:000K

low and high dimensional cases. In contrast, other appesach

cannot consistently produce satisfactory results.
We also conduct the experiments over a larger scale data set,

128-dimensional SIFT features over Caltech and Ukbench)Al SIFT features over Oxford, shown in Figure 9. In this

and1000K 384-dimensional GIST features over Tiny imagescase, due to very high construction cost and much memory
Searching for a small number of NNs is useful for patcbost for PCA tree and Spill tree, we only report other three
matching and for more NNs is useful for similar imagepproaches. It can be seen that our approach consisteitdly ge
search. Our approach builds the tree using the mean as shperior search performance.

partition value due to the cheap construction cost, uses

Besides, we conduct the experiments to illustrate how

dominant axes and0 random trees. The results of othepreprocessing through PCA dimension reduction affects the
approaches are obtained by using the well-tuned or ausearch performance. We first do the PCA dimension reduction
configured (if applicable) parameters. The comparisons dce the reference data set (tiny images) over which prircipa
shown in Figures 6, 7 and 8, respectively. The horizontdirections are computed, and géti-dimensional features,

axis corresponds to average query time (milliseconds), afttming a data set (PCA tiny images). We construct the index

the vertical axis corresponds to search precision.

structure over64-dimensional features. In the query stage,

From the results with 28-dimensional features as shown ireach query is also reduced by PCA to6d-dimensional
Figures 6 and 7, our approach outperforms other approactfesture. The distances to the data points in the leaf nodes ar
Particularly, in the case of short query time, the supdsiorievaluated over the original features and the ground truth is
of our approach is much more significant, which is a desiredso computed over the original features. As Spill tree aRd V
property in the real search problems. The comparisons owere perform very poorly, we only report the results of other
1000K high-dimensional GIST features are shown in Figure &ree approaches. From the result shown in Figure 10, one
The search foB84-dimensional features is actually more chalean observe that our approach performs the best. Compared
lenging. It can be seen that the improvement of our approagith the result without dimension reduction shown in Fig8re
over other approaches is much more significant than for lothhe performances of all the approaches get improved. In
dimensional SIFT features. The precision of our approachdemparison, the improvement of PCA tree is relatively small
consistently higher than other methods at leE$# except This is as expected because PCA tree already has selected the
PCA tree, which is a very significant improvement. One caprincipal directions for space partition while our approas
see that the superiority of our approach, for searchingudifit well as BD tree benefit a lot from the better coordinate axes
numbers of nearest neighbors, is consistent in the casextof lproduced by PCA dimension reduction.
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Fig. 7. Performance comparison over 1000K 128-dimensional features from Ukbench. (a) 1-NN, (b) 5-NN, (c) 10-NN,
(d) 20-NN, (e) 50-NN and (f) 100-NN.

The above experimental results indicate that (1) our afew coordinate axes with weights beirgl or 1, to form the
proach achieves a large improvement in the case of searchiagtition hyperplane. The superiority of our approach ceme
a small number of nearest neighbors and (2) the improveméim two aspects: (1) fast projection operation at internal
is relatively small in the case of searching a large number nbdes in traversing, only requiring a few addition/sulticac
nearest neighbors. The first point implies that our approaoperations, which leads to high search efficiency, and (2)
is powerful to discriminate the points that are near to thgood space partition guaranteed by a large variance alang th
qguery. The second point means that most approaches are abtgection direction for partitioning data points, whiabsults
to discriminate the near neighbors from the far neighbors. in high search accuracy. The data sets used in our expegment

Last, we report the comparison with hashing methods. A&nd the implementation of our approach are publicly avéglab
hashing methods are very slow, we report the performaritcem the project page http://research.microsoft.cgmgdw/
with the time axis in a logarithmic scale, in order to mak&imilarimageSearch/tptree.html.
the comparisons clear. We include the results searching for
1-NN and 20-NN, over two data sets: Caltech with28-
dimensional features and tiny images witR4-dimensional ACKNOWLEDGEMENTS
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