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Table 1. Our method establishes a new SoTA on the COCO test-dev leaderboard.

Method #Params Encoder Pretraining Data Detector Pretraining Data w/ Mask mAP

Swin-L (HTC++) [16] 284M IN-22K (14M) n/a ✓ 58.7

DyHead (Swin-L) [6] 213M IN-22K (14M) n/a ✓ 60.6

Soft-Teacher (Swin-L) [25] 284M IN-22K (14M) COCO-unlabeled + O365 ✓ 61.3

GLIP (DyHead) [11] ≥284M IN-22K (14M) FourODs + GoldG + Cap24M × 61.5

Florence (CoSwin-H) [29] ≥637M FLD-900M (900M) FLD-9M × 62.4

GLIPv2 (CoSwin-H) [29] ≥637M FLD-900M (900M) FourODs + INBoxes + GoldG + CC15M + SBU ✓ 62.4

SwinV2-G (HTC++) [15] 3.0B IN-22K + ext-70M (84M) O365 ✓ 63.1

DINO (Swin-L) [28] 218M IN-22K (14M) O365 × 63.3

BEIT-3 (ViTDet) [22] 1.9B IN-22K + Image-Text (35M) + Text (160GB) O365 ✓ 63.7

FD-SwinV2-G (HTC++) [23] 3.0B IN-22K + IN-1K + ext-70M (85M) O365 ✓ 64.2

FocalNet-H (DINO) [26] 746M IN-22K (14M) O365 × 64.3

Group DETR v2 (Our method) 629M IN-1K (1M) O365 × 64.5

All the results are achieved with test time augmentation. In the table, we follow the notations for various datasets used in DINO [28] and FocalNet [26].
‘w/ Mask’ means using mask annotations when finetuning the detectors on COCO [13].

Abstract

We present a strong object detector with encoder-
decoder pretraining and finetuning. Our method, called
Group DETR v2, is built upon a vision transformer encoder
ViT-Huge [8], a DETR variant DINO [28], and an efficient
DETR training method Group DETR [3]. The training pro-
cess consists of self-supervised pretraining and finetuning a
ViT-Huge encoder on ImageNet-1K, pretraining the detec-
tor on Object365, and finally finetuning it on COCO. Group
DETR v2 achieves 64.5 mAP on COCO test-dev, and estab-
lishes a new SoTA on the COCO leaderboard1.

1. Introduction

Recent studies show the effectiveness of transformer
models at scale [8, 15, 27]. With encoder pretraining on
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large-scale data [7,19], the models [1,4,9,18,22,24] are able
to achieve superior results on various vision tasks, includ-
ing object detection. With supervised encoder-decoder pre-
training on a large-scale dataset, Object365 [20], DINO [28]
achieves a state-of-the-art result on COCO [13].

Our method, Group DETR v2, is built upon ViT-Huge,
DINO, and Group DETR. We adopt an encoder-decoder
pretraining and finetuning pipeline: pretraining and then
finetuning a ViT-Huge encoder on ImageNet-1K [7], pre-
training the detector, both the encoder and the decoder,
on Object365, and finally finetuning it on COCO. Group
DETR v2 achieves 64.5 mAP on COCO test-dev [13] (Ta-
ble 1 and Table 2), setting a new record for COCO object
detection. We expect that the results will be further im-
proved with more data and larger models.

2. Method
2.1. Architecture

Encoder. We adopt a ViT-Huge as the encoder. We re-
sort to the self-supervised pretrained model, Vit-Huge, e.g.,
with the MIM method CAE [4], which shows superior per-
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Table 2. Our method, Group DETR v2, establishes a new SoTA
on the COCO test-dev leaderboard.

Method mAP AP50 AP75 APs APm APl

Group DETR v2 64.5 81.8 71.1 48.4 67.2 77.1

Table 3. Results on Object365 5k val with a single scale of 800×
1333.

Method mAP AP50 AP75 APs APm APl

Group DETR v2 55.6 68.8 60.9 36.6 57.5 71.3

formance on downstream tasks. We follow ViTDet [12] to
build multi-scale feature maps for multi-scale DETR.

Decoder. We adopt the transformer encoder-decoder
framework as the decoder that shows promising detection
results, including DETR [2], Conditional DETR [17], DAB-
DETR [14], Deformable DETR [30], DN-DETR [10], and
DINO [28]. Group DETR [3] provides further progress
in improving the training convergence speed and the de-
tection performance of various DETR variants. We build
our detection decoder by combining DINO [28] into Group
DETR [3].

2.2. Implementation

The training process includes three stages: (i) pretrain
and finetune the ViT-Huge encoder on ImageNet-1K [7], (ii)
pretrain the whole detector (encoder and decoder) on Ob-
ject365 [20], and (iii) finetune the detector on COCO [13].
When pretraining the detector on Object365, we follow
DINO [28] to only leave the first 5k out of 80k validation
images as the validation set and add the other images to
the training set. We also use other schemes when train-
ing the detector on Object365 and COCO, such as enlarg-
ing the image size to 1.5× when finetuning and adopting
test time augmentation. In addition, we apply the expo-
nential moving average (EMA) technique [21], use 100 DN
queries [28], and adopt 11 groups with Group DETR [3]
during detector pretraining and finetuning. When finetun-
ing the detector on COCO, we find that applying learning
rate decay [1,4,5,9] for the components of the detector (en-
coder and decoder) gives a ∼0.9 mAP gain on COCO.

3. Experiments

Results on Object365 5k val. We pretrain Group DETR
v2 for 24 epochs with 64 A100 GPUs on Object365. On the
first 5k validation set, our Group DETR v2 achieves 55.6
mAP. Table 3 gives detailed results.

Results on the COCO test-dev. We finetune the detec-
tor (pretrained on Object365) on the COCO training set for
20 epochs with 32 A100 GPUs. During testing, we adopt
test time augmentation with various scales and their flipped
counterparts, and perform fusion on the query features2 and
the final predictions [28]. Our Group DETR v2 achieves
64.5 mAP on COCO test-dev. Table 2 provides detailed re-
sults.

Comparisons with state-of-the-art results on the COCO
test-dev leaderboard. We report the previous SoTA re-
sults on the COCO leaderboard. Table 1 shows that only
pretraining the ViT-Huge encoder on ImageNet-1K, Group
DETR v2 outperforms other methods with larger models
(e.g., BEIT-3 [22] and SwinV2-G [15]) and more training
data, and sets a new record on COCO test-dev. We expect
that the results will be further improved with more data and
larger models.
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