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Abstract

Vision Transformer (ViT) attains state-of-the-art performance in visual recognition,
and the variant, Local Vision Transformer, makes further improvements. The major
component in Local Vision Transformer, local attention, performs the attention
separately over small local windows.
We rephrase local attention as a channel-wise locally-connected layer and analyze it
from two network regularization manners, sparse connectivity and weight sharing,
as well as weight computation. Sparse connectivity: there is no connection across
channels, and each position is connected to the positions within a small local
window. Weight sharing: the connection weights for one position are shared across
channels or within each group of channels. Dynamic weight: the connection
weights are dynamically predicted according to each image instance.
We point out that local attention resembles depth-wise convolution and its dy-
namic version in sparse connectivity. The main difference lies in weight sharing -
depth-wise convolution shares connection weights (kernel weights) across spatial
positions. We empirically observe that the models based on depth-wise convolution
and the dynamic variant with lower computation complexity perform on-par with
or sometimes slightly better than Swin Transformer, an instance of Local Vision
Transformer, for ImageNet classification, COCO object detection and ADE seman-
tic segmentation. These observations suggest that Local Vision Transformer takes
advantage of two regularization forms and dynamic weight to increase the network
capacity.

1 Introduction
Vision Transformer [8, 12, 14, 17, 18, 33, 53, 57, 59, 62, 65] has shown promising performance in
ImageNet classification. The improved variants, Local Vision Transformer [7, 37, 54], adopt the local
attention mechanism, which partitions the image space into a set of small windows, and conducts the
attention over the windows simultaneously. Local attention leads to great improvement in memory
and computation efficiency and makes the extension to downstream tasks easier and more efficient,
such as object detection and semantic segmentation.

We exploit the conventional network regularization schemes [16], sparse connectivity that controls
the model complexity, and weight sharing that relaxes the requirement of increasing the training
data scale, as well as dynamic weight prediction that increases the model capability, to study the
local attention mechanism. We rephrase local attention as a channel-wise spatially-locally connected
layer with dynamic connection weights. The main properties are summarized as follows. (i) Sparse
connectivity: there is no connection across channels, and each output position is only connected to
the input positions within a local window. (ii) Weight sharing: the connection weights are shared
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across channels or within each group of channels. (iii) Dynamic weight: the connection weights are
dynamically predicted according to each image instance.

We compare local attention to depth-wise convolution [6, 23] that is also a channel-wise spatially-
locally connected layer. They are similar in sparse connectivity. The major difference lies in the
weight sharing pattern: depth-wise convolution shares the weights across spatial positions other than
across channels. Other than learning the weights as static model parameters, depth-wise convolution
also benefits from dynamic connection weights (convolutional kernel weights) [20].

We take the recently-developed Local Vision Transformer, Swin Transformer [37], as an example,
and study the empirical performance of local attention and (dynamic) depth-wise convolution in the
training setting same as Swin Transformer. We replace the local attention layer with the (dynamic)
depth-wise convolution layer, keeping the overall structure unchanged. The results show that
the (dynamic) depth-wise convolution-based approaches achieve comparable or slightly higher
performance for ImageNet classification and two downstream tasks, COCO object detection and ADE
semantic segmentation, and (dynamic) depth-wise convolution takes lower computation complexity.

We summarize the main findings in the following.
• Local attention adopted by local Vision Transformer takes advantage of existing regulariza-

tion schemes, sparse connectivity and weight sharing, as well as dynamic weight prediction,
for increasing the capability without requiring a corresponding increase in model complexity
and training data.

• Local attention and (dynamic) depth-wise convolution are similar in sparse connectivity
and differ in weight sharing and dynamic weight prediction forms. The empirical results on
visual recognition imply that the regularization forms and the dynamic weight prediction
scheme exploited by local attention and (dynamic) depth-wise convolution perform similarly.

• In addition, we present a relation graph to connect convolution and attention, as well as
the concurrently-developed MLP-based methods, e.g., ResMLP [52] and MLP-Mixer [51].
The relation graph shows that these methods essentially take advantage of different sparse
connectivity and weight sharing patterns for model regularization optionally with dynamic
weight prediction.

2 Understanding Local Attention
2.1 Sparse Connectivity, Weight Sharing, and Dynamic Weight

We give a brief introduction of two regularization forms, sparse connectivity and weight sharing, and
dynamic weight, and their benefits. We will use the three forms to analyze local attention and connect
it to depth-wise convolution.

Sparse connectivity means that there are no connections between some output neurons (variables)
and some input neurons in a layer. It reduces the model complexity without decreasing the number of
neurons, e.g., the size of the (hidden) representations.

Weight sharing indicates that some connection weights are equal. It lowers the number of model
parameters and increases the network size without requiring a corresponding increase in training
data [16].

Dynamic weight refers to learning specialized connection weights for each instance. It generally
aims to increase the model capacity. If regarding the learned connection weights as hidden variables,
dynamic weight can be viewed as introducing second-order operations that increase the capability of
the network. The connection to Hopfield networks is discussed in [44].

2.2 Local Attention
Vision Transformer [14] forms a network by repeating the attention layer and the subsequent point-
wise MLP (point-wise convolution). The local Vision Transformer, such as Swin Transformer [37]
and HaloNet [54], adopts the local attention layer, which partitions the space into a set of small
windows and performs the attention operation within each window simultaneously, to improve the
memory and computation efficiency.

The local attention mechanism forms the keys and values in a window that the query lies in. The
attention output for the query xi ∈ RD at the position i is the aggregation of the corresponding
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Figure 1: Illustration of connectivity for (a) convolution, (b) global attention and spatial mixing MLP, (c) local
attention and depth-wise convolution, (d) point-wise MLP or 1× 1 convolution, and (e) MLP (fully-connected
layer). In the spatial dimension, we use 1D to illustrate the local-connectivity pattern for clarity.

values in the local window, {xi1,xi2, . . . ,xiNk
}, weighted by the corresponding attention weights

{ai1, ai2, . . . , aiNk
}3:

yi =
∑Nk

j=1
aijxij , (1)

where Nk = Kw ×Kh is the size of the local window. The attention weight aij is computed as the
softmax normalization of the dot-product between the query xi and the key xij :

aij =
e

1√
D
x>
i xij

Zi
where Zi =

∑Nk

j=1
e

1√
D
x>
i xij . (2)

The multi-head version partitions the D-dimensional query, key and value vectors into M subvectors
(each with D

M dimensions), and conducts the attention process M times, each over the corresponding
subvector. The whole output is the concatenation of M outputs, yi = [y>i1 y>i2 . . . y

>
iM ]>. The mth

output yim is calculated by

yim =
∑Nk

j=1
aijmxijm, (3)

where xijm is the mth value subvector and aijm is the attention weight computed from the mth head
in the same way as Equation 2.

2.3 Properties

We show that local attention is a channel-wise spatially-locally connected layer with dynamic weight
computation, and discuss its properties. Figure 1 (c) illustrates the connectivity pattern.

The aggregation processes (Equation 1 and Equation 3) for local attention can be rewritten equivalently
in a form of element-wise multiplication:

yi =
∑Nk

j=1
wij � xij , (4)

where � is the element-wise multiplication operator, and wij ∈ RD is the weight vector formed
from the attention weight aij or {aij1, aij2, . . . , aijM}.
Sparse connectivity. The local attention layer is spatially sparse: each position is connected to the Nk

positions in a small local window. There are also no connections across channels. The element-wise
multiplication in Equation 4 indicates that given the attention weights, each output element, e.g., yid
(the ith position for the dth channel), is only dependent on the corresponding input elements from the
same channel in the window, {xi1d, xi2d, . . . , xiNkd}, and not related to other channels.

Weight sharing. The weights are shared with respect to channels. In the single-head attention case, all
the elements {wij1, wij2, . . . , wijD} in the weight vector wij are the same: wijd = aij , 1 6 d 6 D.
In the multi-head attention case, the weight vector wij is group-wise same: wij is partitioned to M
subvectors each corresponding to one attention head, {wij1,wij2, . . . ,wijM}, and the elements in
each subvector wijm are the same and are equal to the mth attention weight, aijm.

3For presentation convenience, we ignore the linear projections conducted to the queries, the keys and the
values. In vision applications, the value and the corresponding key are from the same feature possibly with
different linear projections, and we denote them using the same symbol xij .
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Dynamic weight. The weights, {wi1,wi2, . . . ,wiNk
}, are dynamically predicted from the query xi

and the keys {xi1,xi2, . . . ,xiNk
} in the local window as shown in Equation 2. We rewrite it as:

{wi1,wi2, . . . ,wiNk
} = f(xi;xi1,xi2, . . . ,xiNk

). (5)

Each weight may obtain the information across all the channels, and serves as a bridge to deliver the
across-channel information to each output channel.

Set representation. The keys/values for one query are collected as a set with the spatial-order
information lost. This leads to that the spatial correspondence between the keys/values across
windows is not exploited. The order information loss is partially remedied by encoding the positions
as embeddings [14, 53], or learning a so-called relative position embedding (e.g., [37]) in which the
spatial-order information is preserved as the keys/values in a local window are collected as a vector.

2.4 Connection to Depth-Wise Convolution
Depth-wise convolution is a type of convolution that applies a single convolutional filter for each
channel: X̄d = Cd ⊗Xd, where Xd and X̄d are the dth input and output channel maps, Cd ∈ RNk

is the corresponding kernel weight, and ⊗ is the convolution operation. It can be equivalently written
in the form of element-wise multiplication for each position:

yi =
∑Nk

j=1
woffset(i,j) � xij . (6)

Here, offset(i, j) is the relative offset, offset(i, j) = 2D(j) − 2D(i), from the 2D coordinate of
the position j to the 2D coordinate of the central position i. The weights {woffset(i,j) ∈ RD; j =
1, 2, . . . , Nk} are reshaped from C1,C2, . . . ,CD. The Nk weight vectors are model parameters and
shared for all the positions.

We describe the similarities and differences between (dynamic) depth-wise convolution and local
attention. Figure 1 (c) illustrates the connectivity patterns.

Similarities. Depth-wise convolution resembles local attention in sparse connectivity. There are no
connections across channels. Each position is only connected to the positions in a small local window
for each channel.

Differences. One main difference lies in weight sharing: depth-wise convolution shares the con-
nection weights across spatial positions, while local attention shares the weights across channels or
within each group of channels.

The second difference is that the connection weights for depth-wise convolution are static and learned
as model parameters, while the connection weights for local attention are dynamic and predicted
from each instance. Depth-wise convolution can also benefit from dynamic weight prediction, e.g.,
using the weight prediction scheme in SENet [26] to predict the convolutional kernel weights for
each instance. More discussions about the dynamic weights are given in Appendix B.

One more difference lies in window representation. Local attention represents the positions in
a window by utilizing a set form with spatial-order information lost. It explores the spatial-order
information implicitly using the positional embedding or explicitly using the learned so-called relative
positional embedding. Depth-wise convolution exploits a vector form: aggregate the representations
within a local window with the weights indexed by the relative position (see Equation 6); keep
spatial correspondence between the positions for different windows, thus exploring the spatial-order
information explicitly.

2.5 Relation Graph
We present the connectivity patterns in Figure 1, and the relation graph in Figure 2 with the summa-
rization in Table 1 to describe the relation between convolution, depth-wise separable convolution
(depth-wise convolution + 1 × 1 convolution) [23, 6], Vision Transformer [14, 53], Local Vision
Transformer [37, 54], as well as multilayer perceptron (MLP), Separable MLP (Sep. MLP, e.g., MLP-
Mixer [51], ResMLP [52] and [40]) in terms of sparse connectivity, weight sharing, and dynamic
weight. We discuss their relation in the matrix forms in Appendix A.

Multilayer perceptron (MLP) is a fully-connected layer: each neuron (an element at each position
and each channel) in one layer is connected with all the neurons in the previous layer4. Convolution

4We use the widely-used definition for the term MLP: fully-connected layer. There might be other definitions.
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Figure 2: Relation graph for convolution (Conv.), depth-wise separable convolution (DW-S Conv.), Vision
Transformer (ViT) building block, local ViT building block, as well as Sep. MLP (e.g., MLP-Mixer and ResMLP)
in terms of sparse connectivity and dynamic weight. We also include the low-rank regularization studied for
convolutions and ViT and potentially for MLP, and the explanation for pyramid as low rank and other details
(not our focus) are given in the appendix. The weight sharing patterns are discussed in Section 2.5. Here, ViT
and Local ViT refer to the corresponding building blocks, and PVT means the pyramid way for spatial low-rank.
Dim. = dimension including spatial and channel, Sep. = separable, LR = low rank, MS Conv. = multi-scale
convolution, PVT = pyramid vision transformer.

and separable MLP are sparse versions of MLP. The connection weights can be formulated as a
tensor (e.g., 3D tensor, two dimension for space and one dimension for channel) and the low-rank
approximation of the tensor can be used to regularize the MLP (LR MLP, details in Appendix A).

Convolution is a locally-connected layer, formed by connecting each neuron to the neurons in a small
local window with the weights shared across the spatial positions. Depth-wise separable convolution
is formed by decomposing the convolution into two components: one is point-wise 1× 1 convolution,
mixing the information across channels, and the other is depth-wise convolution, mixing the spatial
information. Other variants of convolution, such as bottleneck, multi-scale convolution or pyramid,
can be regarded as low-rank variants (details in Appendix A).

Separable MLP (e.g., MLP-Mixer and ResMLP) reshapes the 3D tensor into a 2D format with the
spatial dimension and channel dimension. Separable MLP consists of two sparse MLP along the two
dimensions separately, which are formed by separating the input neurons into groups. Regarding
channel sparsity, the neurons in the same channel form a group, and an MLP is performed over each
group with the MLP parameters shared across groups, forming the first sparse MLP (spatial/token
mixing). A similar process is done by viewing the neurons at the same position into a group, forming
the second sparse MLP (channel mixing).

Vision Transformer is a dynamic version of separable MLP. The weights in the first sparse MLP
(spatial/token mixing) are dynamically predicted from each instance. Local Vision Transformer is a
spatially-sparser version of Vision Transformer: each output neuron is connected to the input neurons
in a local window. PVT [57] is a pyramid (spatial sampling/ low-rank) variant of Vision Transformer.

Depth-wise separable convolution can also be regarded as a spatially-sparser version of sparable MLP.
In the first sparse MLP (spatial/token mixing), each output neuron is only dependent on the input
neurons in a local window, forming depth-wise convolution. In addition, the connection weights are
shared across spatial positions, instead of across channels.

3 Experimental Study
We conduct empirical comparisons between local attention and depth-wise convolutions on three
visual recognition tasks (studied on Swin Transformer [37]): ImageNet classification, COCO object
detection, and ADE semantic segmentation. We follow the structure of Swin Transformer to build the
depth-wise convolution-based networks. We apply the same training and evaluation settings from
Swin Transformer to our models. In addition, we study the effects of weight sharing and dynamic
weight in the two methods.

3.1 Architectures

We use the recently-developed Swin Transformer as the example of local attention-based networks
and study the performance over the tiny and base networks: Swin-T and Swin-B, provided by the
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Table 1: The comparison of attention, local attention, convolution, depth-wise convolution (DW-Conv.) and the
dynamic variant (D-DW-Conv.), as well as MLP and MLP variants in terms of the patterns of sparse connectivity,
weight sharing, and dynamic weight. †Channel Sep. MLP corresponds to token-mixer MLP. ‡1× 1 Conv. is
also called point-wise MLP. [The weights might be shared within each group of channels.

Sparse between positions Sparse between Weight sharing across Dynamic
non-local full channels position channel weight

Local attention 3 3 3[ 3
Attention 3 3 3
DW-Conv. 3 3 3
D-DW-Conv. 3 3 3 3
Conv. 3 3

MLP
Channel Sep. MLP† 3 3

1× 1 Conv.‡ 3 3

authors [37]5. We follow the tiny and base networks to build two depth-wise convolution-based
networks, DW-Conv.-T and DW-Conv.-B so that the overall architectures are the same, making
the comparison fair. We also build the dynamic versions, D-DW-Conv.-T and D-DW-Conv.-B, by
predicting the dynamic weights using the similar technique as SENet [26]. We simply replace local
attention in Swin Transformer by depth-wise convolution of the same window size, where the pre- and
post- linear projections over the values are replaced by 1×1 convolutions. We adopt the convolutional
network design pattern to append BN [31] and ReLU [41] to the convolution. The details are available
in Appendix D. In terms of parameter and computation complexity, the depth-wise convolution-based
networks are lower (Table 2) because there are linear projections for keys and values in local attention.

3.2 Datasets and Implementation Details
ImageNet classification. The ImageNet-1K recognition dataset [13] contains 1.28M training images
and 50K validation images with totally 1,000 classes. We use the exactly-same training setting as
Swin Transformer [37]. The AdamW [38] optimizer for 300 epochs is adopted, with a cosine decay
learning rate scheduler and 20 epochs of linear warm-up. The weight decay is 0.05, and the initial
learning rate is 0.001. The augmentation and regularization strategies include RandAugment [11],
Mixup [67], CutMix [66], stochastic depth [28], etc.

COCO object detection. The COCO 2017 dataset [35] contains 118K training and 5K validation
images. We follow Swin Transformer to adopt Cascade Mask R-CNN [4] for comparing backbones.
We use the training and test settings from Swin Transformer: multi-scale training - resizing the
input such that the shorter side is between 480 and 800 and the longer side is at most 1333; AdamW
optimizer with the initial learning rate 0.0001; weight decay - 0.05; batch size - 16; and epochs - 36.

ADE semantic segmentation. The ADE20K [76] dataset contains 25K images, 20K for training,
2K for validation, and 3K for testing, with 150 semantic categories. The same setting as Swin
Transformer [37] is adopted. UPerNet [60] is used as the segmentation framework. Details are
provided in Appendix E.

3.3 Main Results

ImageNet classification. The comparison for ImageNet classification is given in Table 2. One
can see that the local attention-based networks, Swin Transformer, and the depth-wise convolution-
based networks, perform on par (with a slight difference of 0.1) in terms of top-1 accuracy and
real accuracy [3] for both tiny and base models. In the tiny model case, the dynamic depth-wise
convolution-based network performs higher. In particular, the depth-wise convolution-based networks
are more efficient in parameters and computation complexities. In the tiny model case, the parameters
and computation complexities are reduced by 14.2% and 15.5%, respectively. Similarly, in the base
model case, the two costs are reduced by 15.9% and 16.2%, respectively. The dynamic variant takes
more parameters but with almost the same complexity efficiency.

In addition, we report the results for other models: ResNet - with normal convolutions and bottleneck
forming residual units; channel and spatial separable MLP - MLP-Mixer [51] and ResMLP [52]; and
ViT and DeiT - global attention, viewed as dynamic separable MLP. The reason that the results of

5https://github.com/microsoft/Swin-Transformer (MIT License)
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Table 2: ImageNet classification comparison for ResNet, Mixer and ResMLP, ViT and DeiT, Swin (Swin
Transformer), DW-Conv. (depth-wise convolution), and D-DW-Conv. (dynamic depth-wise convolution).

method img. size #param. FLOPs throughput (img. / s) top-1 acc. real acc.
Bottleneck: convolution with low rank
ResNet-50 [21] 2242 26M 4.1G 1128.3 76.2 82.5
ResNet-101 [21] 2242 45M 7.9G 652.0 77.4 83.7
ResNet-152 [21] 2242 60M 11.6G 456.7 78.3 84.1
Channel and spatial separable MLP, spatial separable MLP = point-wise 1× 1 convolution
Mixer-B/16 [51] 2242 46M - - 76.4 82.4
Mixer-L/16 [51] 2242 189M - - 71.8 77.1
ResMLP-12 [52] 2242 15M 3.0G - 76.6 83.3
ResMLP-24 [52] 2242 30M 6.0G - 79.4 85.3
ResMLP-36 [52] 2242 45M 8.9G - 79.7 85.6
Global attention: dynamic channel separable MLP + spatial separable MLP
ViT-B/16 [14] 3842 86M 55.4G 83.4 77.9 83.6
ViT-L/16 [14] 3842 307M 190.7G 26.5 76.5 82.2
DeiT-S [53] 2242 22M 4.6G 947.3 79.8 85.7
DeiT-B [53] 2242 86M 17.5G 298.2 81.8 86.7
DeiT-B [53] 3842 86M 55.4G 82.7 83.1 87.7
Local attention: perform attention in local small windows
Swin-T [37] 2242 28M 4.5G 713.5 81.3 86.6
Swin-B [37] 2242 88M 15.4G 263.0 83.3 87.9
Depth-wise convolution + point-wise 1× 1 convolution
DW-Conv.-T 2242 24M 3.8G 928.7 81.3 86.8
DW-Conv.-B 2242 74M 12.9G 327.6 83.2 87.9
D-DW-Conv.-T 2242 51M 3.8G 897.0 81.9 87.3
D-DW-Conv.-B 2242 162M 13.0G 322.4 83.2 87.9

ResNets are lower than ResMLP might be the strong training setting used in MLP based methods.
The overall conclusion seems to be that the locality-based sparsity pattern (adopted in depth-wise
convolution and local attention) besides sparsity between channels/spatial positions still facilitates
the network training for ImageNet-1K, though separable MLP achieves promising performance.

COCO object detection. The comparisons between local attention (Swin Transformer), depth-wise
convolution, and dynamic depth-wise convolution are shown in Table 3. In the tiny model case, depth-
wise convolution performs a little lower than local attention, and dynamic depth-wise convolution
performs better than the static version and on par with local attention. In the base model case,
(dynamic) depth-wise convolution performs a little worse than local attention.

ADE semantic Segmentation. The comparisons of single scale testing on ADE semantic segmenta-
tion are shown in Table 3. In the tiny model case, (dynamic) depth-wise convolution is ~1.0% higher
than local attention. In the base model case, the performances are similar6.

Summary. In ImageNet classification, depth-wise convolution and its dynamic variant are superior
over local attention: almost the same accuracy with higher computation efficiency. Dynamic depth-
wise convolution is more advantageous in the tiny model case.

In COCO object detection, dynamic depth-wise convolution performs the same with local attention
for the tiny model, and local attention is superior for the base model. The reasons might be: (i) the
training setting for local attention [37] might not be suitable for depth-wise convolution, or (ii) it is
helpful for detection that each position in local attention has its own dynamic weights encoding the
information of the corresponding object. We will conduct a further study by predicting the weights
for each position in dynamic depth-wise convolution as done [58].

In ADE semantic segmentation, depth-wise convolution and its dynamic variant are superior over
local attention for the tiny model, and the performance is similar for the base model.

6We conducted an additional experiment by changing the ending learning rate from 0 to 1e− 6. The base
model with depth-wise convolutions achieves a higher mIoU score: 48.9.
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Table 3: Comparison results on COCO object detection and ADE semantic segmentation.
COCO Object Detection ADE20K Semantic Segmentation

#param. FLOPs APbox APbox
50 APbox

75 APmask #param. FLOPs mIoU
Swin-T 86M 747G 50.5 69.3 54.9 43.7 60M 947G 44.5
DW Conv.-T 82M 730G 49.9 68.6 54.3 43.4 56M 928G 45.5
D-DW Conv.-T 108M 730G 50.5 69.5 54.6 43.7 83M 928G 45.7
Swin-B 145M 986G 51.9 70.9 56.5 45.0 121M 1192G 48.1
DW Conv.-B 132M 924G 51.1 69.6 55.4 44.2 108M 1129G 48.3
D-DW Conv.-B 219M 924G 51.2 70.0 55.4 44.4 195M 1129G 48.0

3.4 Additional Studies

Weight sharing. We study how the performance is affected by the number of channels in each group
across which the weights are shared (the numbers of attention heads at each stage are accordingly
changed). We use the tiny Swin Transformer model for this study and the subsequent studies. The
results from Swin Transformer shown in Figure 3 imply that in the case of too many channels and too
few channels in each group, the accuracy is not the best.

In addition, we study how sharing weights across channels for depth-wise convolution affects the
performance. We use the same weight sharing pattern across channels in Swin Transformer for
sharing weights across channels in depth-wise convolution. The ImageNet top-1 accuracy is slightly
reduced: from 81.3 to 81.1, implying that proper weight sharing across channels does not have big
impact for depth-wise convolution.

96 48 32 16 6
80

80.5

81

81.5

#channels within each group

Figure 3: Effect of #channels sharing
the weights on ImageNet classification.
Too many and too few channels sharing the
weights do not lead to the best ImageNet
classification accuracy.

Dynamic weight. We study how dynamic weight in local
attention affects the performance. We study the static variant:
learn the weights in each window as model parameters (the
weights are not shared across windows). The static version
achieves the ImageNet top-1 accuracy 80.3%, lower than the
dynamic version 81.3% for the tiny model, implying that dy-
namic weight is helpful. We point out that the static variant
is a locally-connected version of separable MLP (ResMLP):
the MLP over each channel (spatial/token mixing) is done
over each window, other than the whole image space. The
results are shown in Table 4 (DW = depth-wise conv.). As a
comparison, we also show the results of dynamic depth-wise
convolution.

Set representation. Local attention represents the positions in a window as a set with the spatial-
order information lost. Swin Transformer learns relative positional embeddings where the positions
in a window are actually described as a vector keeping the spatial-order information. It is reported
in [37] that removing the relative positional embeddings leads to a 1.2% accuracy drop, indicating
the spatial-order information is important.

Retraining on 384 × 384 images. Similar to [37], we study the performance of fine-tuning the
models: first learn with 224× 224 images, then fine-tune on large images of 384× 384. We study
two cases: (1) keep the window size 7 × 7 unchanged; and (2) upsample the kernel weights from
7× 7 to 12× 12 as done in [37] for upsampling the relative positional embeddings.

The results are in Table 57. In the case of keeping the window size 7 × 7 unchanged, depth-wise
convolution (DW) performs better. When using a larger window size 12× 12, depth-wise convolution
performs worse than 7×7. We suspect that this is because upsampling the kernel weights is not a good
starting for fine-tuning. In Swin Transformer, using a larger window size improves the performance.
We believe that this is because the local attention mechanism is suitable for variable window sizes.

Cooperating with SE. Squeeze-and-excitation [26] (SE) is a parameter- and computation-efficient
dynamic module, initially designed for improving the ResNet performance. The results in Table 6
show that depth-wise convolution (DW), a static module, benefits from the SE module, while Swin

7Swin Transformer takes slightly higher FLOPs for 7× 7 than 12× 12. The higher computation cost comes
from larger padding than 12× 12.
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Table 4: Dynamic weight.
dynamic #params FLOPs Acc.

Swin 7 26M 3.8G 80.3
28M 4.5G 81.3

DW 24M 3.8G 81.3
3 51M 3.8G 81.9

Table 5: Retrain on larger images.
model ws. #param. FLOPs Acc.

Swin 7×7 28M 14.4G 81.8
12×12 28M 14.2G 82.4

DW 7×7 24M 11.1G 82.2
12×12 25M 11.5G 82.1

Table 6: Cooperate with SE.
model SE #param. FLOPs Acc.

Swin 28M 4.5G 81.3
3 29M 4.5G 81.2

DW 24M 3.8G 81.3
3 24M 3.8G 81.7

Transformer, already a dynamic module, does not benefit from dynamic module SE. The reason is
still unclear, and might lie in the optimization.

4 Related Work
Sparse connectivity. Sparse connection across channels is widely explored for removing redundancy
in the channel domain. The typical schemes are depth-wise convolution adopted by MobileNet [23,
45], ShuffleNetV2 [39] and IGCv3 [46], and group convolution adopted by ResNeXt [61], merge-
and-run [74], ShuffleNetV1 [71], and IGC [70].

The self-attention unit8 in Vision Transformer, its variants [5, 8, 14, 19, 22, 34, 37, 42, 53, 54, 57, 59,
64, 65, 68, 73, 77], and the spatial information fusion unit (e.g., token-mixer in MLP-Mixer [51] and
ResMLP [52]) have no connections across channels.

1× 1 (point-wise) convolution (in ShuffleNetV2 [39], MobileNet [23, 45], IGC [70], ViT [14], local
ViT [37, 54], MLP-Mixer [51], ResMLP [52]) has no connections across spatial positions. The
convolutions with other kernel sizes and local attention [73, 37, 54] have connections between each
position and the positions within a small local window, respectively.

In addition to hand-crafted sparse connections, various methods are developed for learning sparse
connections, e.g., CondenseNet [27] and dynamic grouping [72].

Weight sharing. Weight sharing across spatial positions is mainly used in convolution, including
normal convolution, depth-wise convolution and point-wise convolution. Weight sharing across
channels is adopted in the attention unit [55], its variants [7, 8, 14, 34, 37, 53, 54, 57, 59, 65], and
token-mixer MLP in MLP-mixer [51] and ResMLP [52].

Dynamic weight. Predicting the connection weights is widely studied in convolutional networks.
There are basically two types. One is to learn homogeneous connection weights, e.g., SENet [26],
dynamic convolution [32]. The other is to learn the weights for each region or each position
(GENet [25], Lite-HRNet [63], Involution [34]). The attention unit in ViT or local ViT learns
dynamic connection weights for each position.

Networks built with depth-wise separable convolutions. There are many networks built upon
depth-wise separable convolution or its variants, such as MobileNet [23, 45], ShuffleNet [39],
IGC [70], Xception [6], and EfficientNet [48, 49]. In this paper, instead of proposing new convolu-
tional modules or improving depth-wise separable convolution, our goal is to compare depth-wise
convolution with local attention.

Convolution vs Transformer. The study in [10] shows that a multi-head self-attention layer can
simulate a convolutional layer by taking into consideration the linear projection conducted on values,
and with specific conditions, e.g., well-designed relative positional embeddings and losing the
dynamic weight scheme. Differently, our analysis and comparison do not need the linear projection
conducted on values, and the connections are discussed for local attention with depth-wise convolution
other than normal convolution. In [1], the mathematical connection (in terms of the tensor form)
between convolution and attention is presented. The opinion that convolution and attention are
essentially about the model complexity control is similar to ours, and we make the detailed analysis
and report empirical studies.

The concurrently-developed work in NLP [50] empirically compares lightweight depth-wise convo-
lution [58] to Transformer for NLP tasks, and reaches a conclusion similar to ours for vision tasks:
convolution and Transformer obtain on-par results. Differently, we attempt to understand why they
perform on par from three perspectives: sparse connectivity, weight sharing and dynamic weight, and
discuss their similarities and differences.

8The pre- and post- linear projections for values can be regarded as 1× 1 convolutions. The attention weights
generated from keys and values with linear projections in some sense mix the information across channels.
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5 Conclusion
We aim to understand local attention through the connection to depth-wise convolution. The experi-
ments imply that the performance of local attention is on par with (dynamic) depth-wise convolution,
suggesting that the good performance of local attention essentially stems from two regularization
forms, sparse connectivity and weight sharing, and dynamic weight. In addition, we also discuss how
the concurrently-developed works, e.g., ResMLP and MLP-Mixer, are related to ViT and depth-wise
convolution. As future works, we will study if the training settings and the architecture design for
depth-wise convolution can be improved over the current settings adopted from Swin Transformer.
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APPENDIX

A Matrix Form for Explaining Relation Graph

We use the matrix form to explain sparsity connectivity in various layers and how they are obtained
by modifying the MLP. We reshow the relation graph in Figure 4.

MLP. The term MLP, Multilayer Perceptron, is used ambiguously, sometimes loosely to any feedfor-
ward neural network. We adopt one of the common definitions, and use it to refer to fully-connected
layers. Our discussion is based on a single fully-connected layer, and can be easily generalized to
two or more fully-connected layers. One major component, except the nonlinear units and others, is a
linear transformation:

y = Wx, (7)
where x represents the input neurons, y represents the output neurons, and W represents the
connection weights, e.g., W ∈ RNC×NC , where N is the number of positions, and C is the number
of channels.
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Figure 4: Relation graph for convolution (Conv.), depth-wise separable convolution (DW-S Conv.), Vision
Transformer (ViT) building block, local ViT building block, Sep. MLP (e.g., MLP-Mixer and ResMLP),
dynamic depth-wise separable convolution (Dynamic DW-S Conv.), as well as dynamic local separable MLP (
e.g., involution [34] and inhomogeneous dynamic depth-wise convolution) in terms of sparse connectivity and
dynamic weight. Dim. = dimension including spatial and channel, Sep. = separable, LR = low rank, MS Conv. =
multi-scale convolution, PVT = pyramid vision transformer.

Convolution. Considering the 1D case with a single channel (the 2D case is similar), the connection
weight matrix W ∈ RN×N is in the following sparse form, also known as the Toeplitz matrix (We
use the window size 3 as an example):

W =


a2 a3 0 0 · · · 0 a1

a1 a2 a3 0 · · · 0 0

...
...

...
...

. . .
...

...
a3 0 0 0 · · · a1 a2

 . (8)

For the C-channel case, we organize the input into a vector channel by channel: [x>1 x>2 . . . x>C ]>,
and accordingly the connection weight matrix channel by channel for the coth output channel,
Wco = [Wco1 Wco2 . . . WcoC ] (the form of Wcoi is the same as Equation 8). The whole form
could be written as 

y1

y2

...
yC

 =


W1

W2

...
WC



x1

x2

...
xC

 . (9)
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Sep. MLP. Sep. MLP, e.g., ResMLP and MLP-Mixer, is formed with two kinds of block-sparse
matrices: one for channel-mixing and the other for spatial-mixing. In the case that the input is
organized channel by channel (the neurons in each channel form a group), x = [x>1 x>2 . . . x>C ]>,
the connection weight matrix is in a block-sparse form:

W =


Wc 0 · · · 0 0

0 Wc · · · 0 0

...
...

. . .
...

...
0 0 · · · 0 Wc

 , (10)

where the block matrices Wc ∈ RN×N are shared across all the channels, and the sharing pattern
can be modified to share weights within each group of channels.

The input can be reshaped position by position (the neurons at each position forms a group): x =
[x>1 x>2 . . . x>N ]>, and similarly one more connection weight matrix can be formulated in a block-
sparse form (it is essentially a 1× 1 convolution, Wp ∈ RC×C):

W′ =


Wp 0 · · · 0 0

0 Wp · · · 0 0

...
...

. . .
...

...
0 0 · · · 0 Wp

 . (11)

The forms of block-sparsity are studied in interleaved group convolutions [70] without sharing the
weights across groups.

Sep. MLP can also be regarded as using Kronecker product to approximate the connection matrix,
Wx = vec(Amat(x)B). (12)

Here, W = B> ⊗A = W>
c ⊗Wp. and ⊗ is the Kronecker product operator. mat(x) reshapes

the vector x in a 2D matrix form, while vec(x) reshapes the 2D matrix into a vector form. In Sep.
MLP, the 2D matrix, mat(x) ∈ RC×N , is organized so that each row corresponds to one channel
and each column corresponds to one spatial position. CCNet [30] and interlaced self-attention [29]
use Kronecker product to approximate the spatial connection: the former reshapes the vector in a 2D
matrix form along the x and y axes, and the latter reshapes the vector windows by windows.

Vision Transformer (ViT). The matrix form is similar to Sep. MLP. The difference is that the matrix
Wc is predicted from each image instance. The weight prediction manner in ViT has a benefit: handle
an arbitrary number of input neurons.

Depth-wise separable convolution. There are two basic components: depth-wise convolution, and
1× 1 convolution that is the same as channel-mixing MLP in Sep. MLP. Depth-wise convolution can
be written in the matrix form:

y1

y2

...
yC

 =


W11 0 · · · 0

0 W22 · · · 0

...
...

. . .
...

0 0 · · · WCC



x1

x2

...
xC

 , (13)

where the form of Wcc is the same as Equation 8.

Local ViT. In the non-overlapping window partition case, local ViT simply repeats ViT over each
window separately with the linear projections, applied to keys, values, and queries, shared across
windows. In the overlapping case, the form is a little complicated, but the intuition is the same. In the
extreme case, the partition is the same as convolution, and the form is as the following:

y1

y2

...
yC

 =


Wd 0 · · · 0

0 Wd · · · 0

...
...

. . .
...

0 0 · · · Wd



x1

x2

...
xC

 , (14)
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where the dynamic weight matrix Wd is like the form below:

Wd =


a12 a13 0 0 · · · 0 a11

a21 a22 a23 0 · · · 0 0

...
...

...
...

. . .
...

...
aN3 0 0 0 · · · aN1 aN2

 . (15)

Low-rank MLP. Low-rank MLP approximates the connection weight matrix W ∈ RDo×Di in
Equation 7 using the product of two low-rank matrix:

W←WDorWrDi
, (16)

where r is a number smaller than Di and Do

Pyramid. The downsampling process in the pyramid networks can be regarded as spatial low
rank: W(∈ RNC×NC) → W′(∈ RN ′C×N ′C), where N ′ is equal to N

4 in the case that the
resolution is reduced by 1

2 . If the numbers of input and output channels are different, it becomes
W(∈ RNC′×NC)→W′(∈ RN ′C′×N ′C).

Multi-scale parallel convolution. Multi-scale parallel convolution used in HRNet [56, 47] can also
be regarded as spatial low rank. Consider the case with four scales, multi-scale parallel convolution
can be formed as as the following,

W→


W1 ∈ RNC1

W2 ∈ RNC2

W3 ∈ RNC3

W4 ∈ RNC4

→

W′

1 ∈ RNC1

W′
2 ∈ RN

4 C2

W′
3 ∈ R N

16C3

W′
4 ∈ R N

64C4

 , (17)

where C1, C2, C3, and C4 are the numbers of the channels in four resolutions.

B Local Attention vs Convolution: Dynamic Weights

We take the 1D case with the window size 2K + 1 as an example to illustrate the dynamic weight
prediction manner. Let {xi−K , . . . ,xi, . . . ,xi+k} correspond to the (2K + 1) positions in the ith
window, and {wi−K , . . . , wi, . . . , wi+K} be the corresponding dynamic weights for updating the
representation of the ith (center) position. The discussion can be easily extended to multiple weights
for each positions, like the M -head attention and updating the representations for other positions.

Inhomogeneous dynamic convolution. We use the case using only a single linear projection to
illustrate inhomogeneous dynamic convolution. The properties we will discuss are similar for more
linear projections. The dynamic weights are predicted as the following:

wi−K
...
wi

...
wi+K


= Θxi =



θ>−K
...

θ>0
...

θ>K


xi. (18)

It can be seen that dynamic convolution learns the weights for each position through the parameters
that are different for different positions, e.g., θk corresponds to wi+k. It regards the positions in the
window as the vector form, keeping the spatial order information.

The prediction of dynamic weights can be conducted using the representations in the local windows,
{xi−K , . . . ,xi, . . . ,xi+K}, other than only xi.
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Dot-product attention. The dot-product attention mechanism in the single-head case predicts the
weights as the following9:



wi−K
...
wi

...
wi+K


=



(xi−K)>

...
(xi)

>

...
(xi+K)>


P>k Pqxi. (19)

Dot-product attention uses the same parameters P>k Pq for all the positions. The weight depends
on the features at the same position, e.g., wi−k corresponds to xi−k. It in some sense regards the
positions in the window as a set form, losing the spatial order information.

We rewrite it as the following

Θd =



(xi−K)>

...
(xi)

>

...
(xi+K)>


P>k Pq, (20)

from which we can see that the parameters Θd is dynamically predicted. In other words, dot-product
attention can be regarded as a two-level dynamic scheme.

Relative position embeddings is equivalent to adding static weights that keeps the spatial order
information: 

wi−K
...
wi

...
wi+K


= Θdxi +



β−K
...
β0

...
βK


. (21)

A straightforward variant is a combination of the static Θ and the dynamic Θd:

wi−K
...
wi

...
wi+K


= (Θd + Θ)xi. (22)

Convolutional attention. We introduce a convolutional attention framework so that it enjoys the
benefits of dynamic convolution and dot-product attention: keep the spatial order information and
two-level dynamic weight prediction.

9For presentation clarity, we omit the softmax normalization and the scale in dot-product. What we discuss
still holds if softmax and scale are included.
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The post-convolutional attention mechanism left-multiplies a matrix (with the kernel size being 3):

Θd =


a2 a3 0 0 · · · 0 a1

a1 a2 a3 0 · · · 0 0

...
...

...
...

. . .
...

...
a3 0 0 0 · · · a1 a2





(xi−K)>

...
(xi)

>

...
(xi+K)>


P>k Pq. (23)

This can be reviewed as a variant of relative positional embedings (Equation 21). In the simplified
case that the left matrix is diagonal, it can be regarded as the product version of relative positional
embeddings (Equation 21 is an addition version).

We can perform a convolution with the kernel size being 3, the kernel weights shared across channels
(it is also fine not to share weights), and then do dot-product attention. This is called pre-convolutional
attention: perform convolutions on the representations. The two processes are can be written as
follows (omit BN and ReLU that follow the convolution),



wi−K
...
wi

...
wi+K


=



a1 a2 a3 · · · 0 0 0

0 a1 a1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · a2 a3 0

0 0 0 · · · a1 a2 a3





(xi−K−1)>

(xi−K)>

...
(xi)

>

...
(xi+K)>

(xi+K+1)>


P>k Pq [xi−1 xi xi]

a1

a2

a3

 .

(24)

It can be generalized to using normal convolution:



wi−K
...
wi

...
wi+K


= C′



xi−K−1 xi−K−1 · · · xi−K−1

xi−K xi−K · · · xi−K
...

...
. . .

...
xi xi · · · xi

...
...

. . .
...

xi+K xi+K · · · xi+K

xi+K+1 xi+K+1 · · · xi+K+1


P>k PqC3

xi−1

xi

xi+1

 . (25)

Here, C’ is a (2K + 1)-row matrix and can be easily derived from the convolutional kernel C3.
The (2K + 1) weights, {wi−1, wi, wi+1}, correspond to the (2K + 1) rows in C, respectively. This
means that the three positions are differentiated and the same position in each window corresponds to
the same row. This explains why the positional embeddings are not necessary when convolutions are
adopted [59]. Using different pairs (Wq,Wk) leads to more weights for each position, e.g., M pairs
correspond to M -head attention.

C Local Attention vs Convolution: Equivalence to Translation

In local attention, the equivalence to translation depends if the keys/values are changed, i.e., if the
query lies in the same window, when the feature map is translated. In the case of sparsely-sampled
window, e.g., [24, 37, 43, 54], (for efficient implementation), local attention is equivalent to block-
wise translation, i.e., the translation is a block with the size same as the window size Kw ×Kh or
multiple blocks. In the case that the windows are densely sampled (e.g., [73]), local attention is
equivalent to translation.
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Table 7: Architectures details of Swin Transformer and depth-wise convolution-based network (DW
Conv.) for the tiny model. The architectures for the base model can be easily obtained.

downsp. rate
(output size) Swin DW Conv.

stage 1 4×
(56×56)

concat 4×4, linear 96-d, LN concat 4×4, linear 96-d, LN

LN, linear 96x3-d

local sa. 7×7, head 3

linear 96-d

LN, linear 384-d

GELU, linear 96-d


× 2



linear 96-d, BN, ReLU

depthwise conv. 7×7, BN, ReLU

linear 96-d, BN, ReLU

BN, linear 384-d

GELU, linear 96-d


× 2

stage 2 8×
(28×28)

concat 2×2, linear 192-d , LN concat 2×2, linear 192-d , LN

LN, linear 192x3-d

local sa. 7×7, head 6

linear 192-d

LN, linear 768-d

GELU, linear 192-d


× 2



linear 192-d, BN, ReLU

depthwise conv. 7×7, BN, ReLU

linear 192-d, BN, ReLU

BN, linear 768-d

GELU, linear 192-d


× 2

stage 3 16×
(14×14)

concat 2×2, linear 384-d , LN concat 2×2, linear 384-d , LN

LN, linear 384x3-d

local sa. 7×7, head 12

linear 384-d

LN, linear 1536-d

GELU, linear 384-d


× 6



linear 384-d, BN, ReLU

depthwise conv. 7×7, BN, ReLU

linear 384-d, BN, ReLU

BN, linear 1536-d

GELU, linear 384-d


× 6

stage 4 32×
(7×7)

concat 2×2, linear 768-d , LN concat 2×2, linear 768-d , LN

LN, linear 768x3-d

local sa. 7×7, head 24

linear 768-d

LN, linear 3072-d

GELU, linear 768-d


× 2



linear 768-d, BN, ReLU

depthwise conv. 7×7, BN, ReLU

linear 768-d, BN, ReLU

BN, linear 3072-d

GELU, linear 768-d


× 2

stage 4 1×1
LN, AvgPool. 1×1 LN, AvgPool. 1×1

linear classifier linear classifier

Depth-wise convolution is similar to local attention in equivalence to translation. Depth-wise
convolution is equivalence to any translation and not limited in block translation in local attention.
This is because of weight sharing across spatial positions10 [16].

D Architecture Details

Overall structures. Following local vision transformer, Swin Transformer [37], we build two depth-
wise convolution-based networks, namely DW-Conv.-T and DW-Conv.-B. The corresponding dynamic
versions are D-DW-Conv.-T and D-DW-Conv.-B. The depth-wise convolution-based networks follow
the overall structure of Swin Transformer. We replace local self attention by depth-wise convolution
with the same window size. We use batch normalization [31] and ReLU [41] instead of layer
normalization [2] in the convolution blocks.

Table 7 shows the architecture details of Swin Transformer and depth-wise convolution-based
networks for the tiny model. Normalizations are performed within the residual block, same as Swin
Transformer. The base model is similarly built by following Swin Transformer to change the number
of channels and the depth of the third stage.

10The boundary positions are often taken into no consideration when talking about equivalence to translation.
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Table 8: ImageNet classification comparison for ResNet, HRNet, Mixer and ResMLP and gMLP, ViT and
DeiT, Swin (Swin Transformer), DW-Conv. (depth-wise convolution), and D-DW-Conv. (dynamic depth-wise
convolution). † means that ResNet is built by using two 3× 3 convolutions to form the residual units.

method img. size #param. FLOPs throughput (img. / s) top-1 acc. real acc.
Convolution: local connection
ResNet-38 † [56] 2242 28M 3.8G 2123.7 75.4 -
ResNet-72 † [56] 2242 48M 7.5G 623.0 76.7 -
ResNet-106 † [56] 2242 65M 11.1G 452.8 77.3 -
Bottleneck: convolution with low rank
ResNet-50 [21] 2242 26M 4.1G 1128.3 76.2 82.5
ResNet-101 [21] 2242 45M 7.9G 652.0 77.4 83.7
ResNet-152 [21] 2242 60M 11.6G 456.7 78.3 84.1
Pyramid: convolution with pyramid (spatial low rank) features.
HRNet-W18 [56] 2242 21M 4.0G - 76.8 -
HRNet-W32 [56] 2242 41M 8.3G - 78.5 -
HRNet-W48 [56] 2242 78M 16.1G - 79.3 -
Channel and spatial separable MLP, spatial separable MLP = point-wise 1× 1 convolution
Mixer-B/16 [51] 2242 46M - - 76.4 82.4
Mixer-L/16 [51] 2242 189M - - 71.8 77.1
ResMLP-12 [52] 2242 15M 3.0G - 76.6 83.3
ResMLP-24 [52] 2242 30M 6.0G - 79.4 85.3
ResMLP-36 [52] 2242 45M 8.9G - 79.7 85.6
gMLP-Ti [36] 2242 6M 1.4G - 72.0 -
gMLP-S [36] 2242 20M 4.5G - 79.4 -
gMLP-B [36] 2242 73M 15.8G - 81.6 -
Global attention: dynamic channel separable MLP + spatial separable MLP
ViT-B/16 [14] 3842 86M 55.4G 83.4 77.9 83.6
ViT-L/16 [14] 3842 307M 190.7G 26.5 76.5 82.2
DeiT-S [53] 2242 22M 4.6G 947.3 79.8 85.7
DeiT-B [53] 2242 86M 17.5G 298.2 81.8 86.7
DeiT-B [53] 3842 86M 55.4G 82.7 83.1 87.7
Pyramid attention: perform attention with spatial low rank
PVT-S [57] 2242 25M 3.8G - 79.8 -
PVT-M [57] 2242 44M 6.7G - 81.2 -
PVT-L [57] 2242 61M 9.8G - 81.7 -
Local attention: perform attention in local small windows
Swin-T [37] 2242 28M 4.5G 713.5 81.3 86.6
Swin-B [37] 2242 88M 15.4G 263.0 83.3 87.9
Depth-wise convolution + point-wise 1× 1 convolution
DW-Conv.-T 2242 24M 3.8G 928.7 81.3 86.8
DW-Conv.-B 2242 74M 12.9G 327.6 83.2 87.9
D-DW-Conv.-T 2242 51M 3.8G 897.0 81.9 87.3
D-DW-Conv.-B 2242 162M 13.0G 322.4 83.2 87.9

Dynamic depth-wise convolution. Dynamic depth-wise convolution generates the connection
weights according to the instance. We conduct the global average pooling operation to get a vector,
and adopt two linear projections: the first one reduces the dimension by 1/4, followed by ReLU, and
then generate the kernel weights. Unlike SENet [26], we currently do not use the Sigmoid activation
function for generating the weights.

E Setting Details

ImageNet pretraining. We use the identical training setting with Swin Transformer in ImageNet
pretraining for fair comparison. The default input size is 224×224. The AdamW optimizer [38], with
the initial learning rate 0.001 and the weight decay 0.05, is used for 300 epochs. The learning rate is
scheduled by a cosine decay schema and warm-up with linear schema for the first 20 epochs. We train
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Figure 5: Training and validation curves for ImageNet classification. (a) and (b) are the training loss
and validation top-1 accuracy curves for the tiny model, and (c) and (d) are for the base model.

the model on 8 GPUs with the total batch size 1024. The augmentation and regularization strategies
are same as Swin Transformer, which includes RandAugment [11], Mixup [67], CutMix [66], random
erasing [75] and stochastic depth [28]. The stochastic depth rate is employed as 0.2 and 0.5 for the
tiny and base models, respectively, the same as Swin Transformer.

COCO object detection. We follow Swin Transformer to adopt Cascade Mask R-CNN [4] for
comparing backbones. We use the training and test settings from Swin Transformer: multi-scale
training - resizing the input such that the shorter side is between 480 and 800 and the longer side is at
most 1333; AdamW optimizer with the initial learning rate 0.0001; weight decay - 0.05; batch size -
16; and epochs - 36.

ADE semantic segmentation. Following Swin Transformer, we use UPerNet [60] as the segmenta-
tion framework. We use the same setting as the Swin Transformer: the AdamW optimizer with initial
learning rate 0.00006; weight decay 0.01; linear learning rate decay; 160,000 iterations with warm-up
for 1500 iterations; 8 GPUs with mini-batch 2 per GPU. We use the same data augmentation as Swin
Transformer based on MMSegmentation [9]. The experimental results are reported as single scale
testing.

Static version of Swin Transformer. We remove the linear projections applied to keys and queries,
accordingly dot production and softmax normalization. The connection weights (corresponding to
attention weights in the dynamic version) are set as static model parameters which are learnt during
the training and shared for all the images.

Retraining on 384× 384. We retrain the depth-wise convolution-based network on the ImageNet
dataset with 384× 384 input images from the model trained with 224× 224 images. We use learning
rate 10−5, weight decay 10−8 and stochastic depth ratio 0.1 for 30 epochs for both 7× 7 and 12× 12
windows.
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Figure 6: Training and validation curves for COCO object detection. (a) and (b) are the training loss
and validation box AP curves for the tiny model, and (c) and (d) are for the base model. It is not
expected that depth-wise convolution-based models have lower training errors, but lower detection
scores.
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Figure 7: Training and validation curves for ADE semantic segmentation. (a) and (b) are the training
loss and validation curves mIoU for the tiny model, and (c) and (d) are for the base model.
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Table 9: Exploring normalization schemes of Swin Transformer and depth-wise convolution based
networks (DW Conv.) for the tiny model. The results are reported on the ImageNet top-1 accuracy.

Layer Norm. Batch Norm. Centering calibrated Batch Norm. Top-1 Acc.
Swin 3 81.3

Swin 3 80.9

Swin 3 81.2

DW Conv. 3 81.2

DW Conv. 3 81.3

DW Conv. 3 81.7

Table 10: Combination of weight sharing across channels and positions. The results are reported on
the ImageNet top-1 accuracy.

sharing across channels sharing across positions Acc.

Swin
3 7 80.3
3 3 80.3

DW Conv.
7 3 81.3
3 3 81.1

F Additional Experiments and Analysis

More results on ImageNet classification. We give more experimental results with different sparse
connection strategies, as shown in Table 8. These results also verify that locality-based sparsity pattern
(adopted in depth-wise convolution and local attention) besides sparsity between channels/spatial
positions still facilitates the network training for ImageNet-1K.

Training curves on ImageNet, COCO and ADE. Figures 5, 6 and 7 show the training and validation
curves for Swin Transformer and depth-wise convolution-based methods on ImageNet classification,
COCO object detection and ADE20K semantic segmentation.

The curves for ImageNet classification and ADE20K semantic segmentation are normal, but the
curves for object detection shown in Figure 6 are not normal: depth-wise convolutions get lower
training errors, but lower validation scores. The reason is not clear, and might be the training setting
(same as Swin Transformer on COCO object detection) or other issues.

Cooperating with different normalization functions. Transformers usually use the layer normal-
ization to stabilize the training, while convolutional architectures adopt batch normalization. We
verify different combinations of backbones (Swin and DW Conv.) and normalization functions.
The popular used layer normalization (LN), batch normalization (BN), and the dynamic version of
batch normalization - centering calibrated batch normalization [15] (CC. BN) are verified in the
experiments. Table 9 shows the results on ImageNet classification.

Combining weight sharing across positions and channels. Depth-wise convolution shares weights
across positions, while local transformer shares weights across channels or within each group of
channels. In static Swin Transformer, we study a further variant, the weight parameters are shared
across windows. In depth-wise convolution-based networks, we additionally share the weights across
channels in the same way as Swin Transformer. The results are reported in Table 10.

Spatial inhomogeneous dynamic convolutional weights. In our experiment, we use weights shared
across positions for the dynamic version of depth-wise convolution-based networks. This may be
enhanced by using weights not shared across positions, such as GENet [25], Involution [34], and
Lite-HRNet [63].

We made an initial investigation (inhomogeneous dynamic): generate local weights for each position
using two 1× 1 convolutions to predict the weights shared across each group of channels, which is a
generalization of homogeneous dynamic weight prediction and similar to [34, 58, 63], and share the
weights within each group of channels. The results are shown in Table 11. The higher performance
from our new dynamic weight prediction way may stem from that the weights using the attention
mechanism are predicted by regarding the keys as a set and our approach generates the kernel weights
as a feature vector.

24



Table 11: Generate local weights for each position and share the weights with each group of channels
(inhomogeneous dynamic, I-Dynamic).

ImageNet COCO ADE20K
#param. FLOPs top-1 acc. real acc. #param. FLOPs APbox APmask #param. FLOPs mIoU

Swin-T 28M 4.5G 81.3 86.6 86M 747G 50.5 43.7 60M 947G 44.5
DW Conv.-T 24M 3.8G 81.3 86.8 82M 730G 49.9 43.4 56M 928G 45.5
D-DW Conv.-T 51M 3.8G 81.9 87.3 108M 730G 50.5 43.7 83M 928G 45.7
I-Dynamic-T 26M 3.95G 81.8 87.1 84M 741G 50.8 44.0 58M 939G 46.2
Swin-B 88M 15.4G 83.3 87.9 145M 986G 51.9 45.0 121M 1192G 48.1
DW Conv.-B 74M 12.9G 83.2 87.9 132M 924G 51.1 44.2 108M 1129G 48.3
D-DW Conv.-B 162M 13.0G 83.2 87.9 219M 924G 51.2 44.4 195M 1129G 48.0
I-Dynamic-B 80M 13.6G 83.4 88.0 137M 948G 51.8 44.8 114M 1153G 47.8

Table 12: Co-operations with more depth-wise convolution before FFN (MDW) and optionally with
SE layer (SE), global MLP (gMLP). Results are reported on tiny model.

#param. FLOPs top-1 acc.
DW Conv. 24M 3.8G 81.3
DW Conv. + gMLP 24M 3.8G 81.6
DW Conv. + MDW 24M 3.8G 81.9
DW Conv. + MDW + SE 25M 3.8G 82.1
DW Conv. + MDW + SE + gMLP 25M 3.8G 82.3
D-DW Conv. 51M 3.8G 81.9
D-DW Conv. + MDW + SE + gMLP 52M 3.9G 82.1
I-dynamic-DW Conv. 26M 4.0G 81.8
I-dynamic-DW Conv. + MDW + SE + gMLP 27M 4.0G 82.3

Local convolution with global MLP. In order to introduce long range interactions to the depth-wise
convolution, we build a parallel branch using global MLP. This global branch firstly perform a pooling
operation down-sampling the feature maps to a fixed size. Then the channel separable MLP fuses the
down-sampled features to capture long range interactions. We use fixed size 8× 8, 4× 4 and 2× 2
in the first three stages.

More depth-wise convolutions. We simply add more depth-wise convolutions between the original
local fusion block and FFN block, with residual connection. Optionally, we add an SE layer following
the additional depth-wise convolution to introduce dynamic characteristic among channel.

G Potential Studies

Complexity balance between point-wise (1 × 1) convolution and depth-wise (spatial) convolu-
tion. Depth-wise convolution takes only about 2% computation in the depth-wise convolution-based
architecture. The major computation complexity comes from 1× 1 convolutions. The solutions to
this issue could be: group 1× 1 convolution studied in IGC [70, 46], and channel-wise weighting
(like SENet) studied in Lite-HRNet [63] and EfficientNet [48, 49], or simply add more depth-wise
(spatial) convolutions.

Attention weights as channel maps. Attention weights in attention can be regarded as channel maps.
The operations, such as convolution or simple weighting, can be applied to the attention weights. The
resT approach [69] performs 1× 1 convolutions over the attention weight maps.

Dynamic weights. In Swin Transformer and our developed dynamic depth-wise convolution net-
works, only the spatial part, attention and depth-wise convolution, explores dynamic weights. Lite-
HRNet instead studies dynamic weight for point-wise (1× 1) convolution. It is interesting to explore
dynamic weight for both parts.

Convolution-style MLP weights. The weights of the spatial-mixing MLP in MLP-Mixer and
ResMLP could be modified in the convolution-like style with more weights (some like the relative
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position embeddings used in local attention, larger than the image window size) so that it could be
extended to larger images and downstream tasks with different image sizes.
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