
Query-Driven Iterated Neighborhood Graph Search
for Large Scale Indexing

Jingdong Wang Shipeng Li
Microsoft Research Asia, Beijing, P. R. China

{jingdw, spli}@microsoft.com

ABSTRACT

In this paper, we address the approximate nearest neigh-
bor (ANN) search problem over large scale visual descrip-
tors. We investigate a simple but very effective approach,
neighborhood graph search, which constructs a neighbor-
hood graph to index the data points and conducts a local
search, expanding neighborhoods with a best-first manner,
for ANN search. Our empirical analysis shows that neigh-
borhood expansion is very efficient, with O(1) cost, for a new
NN candidate location, and has high chances to locate true
NNs and hence it usually performs well. However, it often
gets sub-optimal solutions since local search only checks the
neighborhood of the current solution, or conducts exhaus-
tive and continuous neighborhood expansions to find better
solutions, which deteriorates the query efficiency.

In this paper, we propose a query-driven iterated neigh-
borhood graph search approach to improve the performance.
We follow the iterated local search (ILS) strategy, widely-
used in combinatorial optimization, to find a solution be-
yond a local optimum. We handle the key challenge in mak-
ing neighborhood graph search adapt to ILS, Perturbation,
which generates a new pivot to restart a local search. To this
end, we present a criterion to check if the local search over a
neighborhood graph arrives at the local solution. Moreover,
we exploit the query and search history to design the per-
turbation scheme, resulting in a more effective search. The
major benefit is avoiding unnecessary neighborhood expan-
sions and hence more efficiently finding true NNs. Experi-
mental results on large scale SIFT matching, similar image
search, and shape retrieval with non-metric distance mea-
sures, show that our approach performs much better than
previous state-of-the-art ANN search approaches.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; H.3.1 [Information
Storage and Retrieval]: Information Search and Retrieval—
Search process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10 ...$15.00.

General Terms

Algorithms, Experimentation

Keywords

Local neighborhood graph search, iterated, query-driven,
ANN search

1. INTRODUCTION
Large scale indexing has been attracting more and more

interest in multimedia search. Efficient and effective ap-
proximate nearest neighbor search plays an important role
in this field. For instance, the state-of-the-art duplicate im-
age search [49, 50] depends on the bag-of-words descriptor,
which usually exploits ANN search techniques to group large
scale local features into visual words using k-means or simi-
lar algorithms [36] and map visual features to visual words.
Other examples include finding the best matches for local
image features in large data sets [37] and large scale similar
image search [22].

In the communities of multimedia and computer vision,
two main categories of ANN search schemes, partitioning
trees and hashing, are studies. Partitioning trees, including
kd-trees [6, 13] and its variants [4, 5, 19, 35], metric trees
(e.g., ball trees [24], vantage point trees (vp-tree) [48], spill-
trees [23]), and hierarchical k-means trees [29], organize data
points using tree structures by recursively partitioning the
space into subspaces, and each subspace, associated with a
subset of data points, corresponds to a subtree. The query
procedure is to traverse the tree by expanding the subtrees
(subspaces) down to the leaf nodes to obtain NN candidates,
in some order, e.g., depth-first or best-first. Such a scheme
takes too much time overhead, which is defined as the time
cost of discovering new NN candidates in this paper. In
partitioning trees, the time overhead is the cost of locating
a leaf node. Moreover, the search order, which means the
order of accessing NN candidates, is not good enough to
make the searching path quickly move towards the true NNs.
Note that time overhead and search order are the key factors
determining the ANN search performance.

Hashing based approaches include locality sensitive hash-
ing (LSH) [8], spectral hashing [45], and other variants [16,
22, 46]. The query procedure has to check a large number
of NN candidates from the buckets that correspond to the
same (or similar) hash codes with the query point, to guar-
antee the accuracy. However, it does not discriminate the
points in the buckets and has no optimized search order to
access them, which leads to high time cost on checking the

points with low probabilities to be true NNs. The paper [8]
suggests a sub-optimal search order, increasing gradually the
radius R in R-NN search, to access NN candidates, which is
shown to be much slower than partitioning trees [27].

In this paper, we propose to exploit the neighborhood
graph structure for large scale visual descriptor indexing.
The intuition of its workability is that the points, near a
point that is close to the query, have high probabilities to
be also close to the query. The search procedure, early pre-
sented in [3] and reproposed in [15], named as a local neigh-
borhood graph search, starts from one or several data points
and conducts a best-first strategy to discover new NN can-
didates, by first checking the points in the neighborhood of
the best one among the previously-discovered NN candidates
whose neighborhoods are not expanded yet. The advantages
include that the time overhead to access a new NN candi-
date is significantly reduced, only O(1), and particularly the
search order to access the candidates determined from the
neighborhoods is better than partitioning trees and hashing
based methods. Fig. 1 presents the comparisons over 1M
GIST descriptors of tiny images between the neighborhood
graph and partitioning trees to demonstrate such advan-
tages. It can be observed (1) that the time overhead with the
NG search is only a half of that with kd-trees and is about
2

5
of the time cost of computing the distances between the

query and the accessed points when accessing 6000 points
and (2) that the accuracy of the NG search is larger than
that of kd-trees. However, the local neighborhood graph
search often gets sub-optimal solutions, or conducts exhaus-
tive and continuous neighborhood expansions to find better
solutions, which deteriorates the query efficiency.

We propose a query-driven iterated neighborhood graph
search approach for searching ANNs beyond local optima.
In order to make the local neighborhood graph search adapt
to the widely-used iterated local search strategy in operation
research, we resolve the key challenge, i.e., designing Pertur-
bation to generate a new pivot to restart a local search, by
introducing a criterion to check if the ANN search over a
neighborhood graph reaches a local optimum. Moreover, we
propose to utilize the query and search history to drive the
perturbation scheme to make the search more effective. The
major benefit from them is avoiding unnecessary neighbor-
hood expansions and more efficiently finding true NNs. Ex-
perimental results of ANN search for visual descriptors (e.g.,
128-dimensional SIFT descriptors) demonstrate that our ap-
proach gets the superior performance. Particularly, when
searching higher-dimensional visual descriptors (e..g, 384-
dimensional GIST descriptors) and requiring higher search
accuracy, the superiority of our approach over existing ANN
search algorithms is more significant.

2. RELATED WORK
In the literature of multimedia search, ANN search meth-

ods include two main categories, partitioning tree and hash-
ing, as well as other methods, e.g., low dimensional embed-
ding. In the following, we will present a short review on
ANN search methods that are widely investigated in multi-
media. More could be found from [31].

Partitioning trees. The partitioning tree based ap-
proaches recursively split the space into subspaces, and or-
ganize the subspaces using a tree (called space partitioning
tree). Most space-partitioning systems use hyperplanes or

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

#accessed data points

ti
m

e

time on accessing data points

overhead with kd-tree

overhead on NG

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

#accessed data points

a
c
c
u
ra

c
y

NG

Kd−tree

(b)

Figure 1: Illustrating the superiority of ANN search
with a neighborhood graph over with multiple ran-
domized kd-trees. (a) comparison in terms of #ac-
cessed data points vs. average search time, and (b)
comparison in terms of #accessed data points vs.
average search accuracy.

hyperspheres to divide the space, and data points are ac-
cordingly partitioned into two subsets, with each lying in
one side. Points exactly on the plane are usually arbitrar-
ily assigned to either side. Recursively partitioning space in
this way produces a binary partitioning tree, for example,
kd-trees [6, 13] and its variants [4, 5, 19, 35], and metric trees
(e.g., ball trees [24], vantage point trees (vp-tree) [48], and
spill-trees [23]). Using other criteria to split the space may
yield multi-way partitioning trees, such as Quadtrees [11],
Octrees [47], hierarchical k-means trees [29] and so on, which
are mainly for low-dimensional cases and hence improper for
ANN search over high-dimensional visual descriptors.

In the query stage, the branch-and-boundmethodology [6]
is usually applied to searching (approximate) nearest neigh-
bors. This scheme needs to traverse the tree from the root
to a leaf by evaluating the query at each internal node, and
pruning some subtrees according to the evaluation and the
current-identified nearest neighbors. The current state-of-
the-art search strategy, priority search [4] or best-first [5],
builds a priority queue to produce an order of accessing sub-
trees so that the data points with large probabilities to be
true nearest neighbors are first accessed.

Recently, kd-tree based ANN search methods are widely
investigated for multimedia search applications. The scheme
about multiple randomized kd-trees is studied in [35]. Parti-
tioning the space, using the trinary combination of the coor-
dinates as the partitioning plane, expects to get better space
partitions with still low time cost to locate a leaf node [19].

Hashing. Hashing based ANN search methods also attract
a lot of attention. Locality sensitive hashing (LSH) [8], one
of the typical representatives, is a method of performing
ANN search in high dimensions, dependent on probabilistic
dimension reduction of high-dimensional data. The key idea
is to hash the points using several hash functions to ensure
that for each function the probability of collision is much
higher for objects (points) that are close to each other than
those far apart. Then, one can determine nearest neighbors
by hashing the query and retrieving elements stored in the
buckets containing it. LSH has many applications, e.g., for
pose matching, contour matching, and mean shift clustering,
a literature review could be found in [33]. Recently, a lot of
research efforts have been conducted on finding good hash-
ing functions, by using metric-learning-like techniques, such
as optimized kernel hashing [16], learned metrics [18], learnt
binary reconstruction [21], kernelized LSH [22], and shift

Algorithm 1 Iterated local search

1. s0 ← GenerateInitialSolution
2. s∗ ← LocalSearch(s0)
3. repeat
4. s′ ← Perturbation(s∗, history) /*Produce a new config-

uration from the current optimum s∗ and the history.*/

5. s∗′ ← LocalSearch(s′)
6. s∗ ← AcceptanceCriterion(s∗, s∗′, history) /*Deter-

mine if the new solution is accepted.*/

7. until termination condition met

kernel hashing [30], semi-supervised hashing [42], weakly-
supervised hashing [25], non-metric hashing [26], multi-
feature hashing [38], spectral hashing [45], complementary
hashing [46]. The learning based strategy actually can also
be used in our approach. However, this paper would not
make investigation on index construction, and instead fo-
cuses mainly on the search strategy. Hashing based algo-
rithms may be good to guarantee good precision and recall
performances, but is poor at the query efficiency [27].

There are some other methods for ANN search. LSH es-
sentially is also an embedding method, and other classes of
embedding methods include Lipschitz embedding [20] and
FastMap [9]. Neighborhood graph methods are another
class of index structures. Unlike a tree structure hierar-
chically organizing subspaces or subsets of data points, it
organizes the data with a graph structure to connect data
points, for example, Delaunay graph in Sa-tree [28], rela-
tive neighborhood graph [40], k-NN (ǫ-NN) graph [32], and
degree-reduced neighborhood graph [1]. The focus of this
paper does not lie in the neighborhood graph construction,
and but focuses on the search procedure. To conduct ANN
searches, additional points, called pivots, are required as the
starting points to guide the neighborhood graph search, for
example, selecting the pivots, by clustering [32] (query in-
dependent) or from the first NN candidate of kd-trees [3]
(query dependent). These approaches, however, are local
search and tend to be stuck at local optima. This paper
proposes a query-driven iterated neighborhood graph search
approach to address such a problem. As an ongoing work,
we are investigating the ANN search over billions of points
using a two-stage inverted indexing approach, by combining
the proposed approach and the approach presented in [41]
and later we will show a demo based on the technology [43]
in ACMMM12.

3. OUR APPROACH
Given a set of n reference data points X = {x1, · · · ,xn}

with xi ∈ R
k being a k-dimensional point, the goal is to

build a data structure to index these points so that the near-
est neighbors of a query xq can be fast found. A neighbor-
hood graph is a directed graph that organizes data points by
connecting each data point with its neighboring points. The
neighborhood graph is denoted as G = {(vi, Adj[vi])}

n
i=1,

where vi corresponds to a point xi and Adj[vi] is a list of
nodes that correspond to its neighbors.

3.1 Preliminaries
The following introduces the preliminary techniques local

neighborhood graph search [3] that performs ANN search
over a neighborhood graph and iterated local search [17]
that finds solutions beyond local optima.

Algorithm 2 Query-driven iterated neighborhood graph
search
1. P0 ← GenerateInitialSolution(q, T)
2. R∗ ← LocalNGSearch(P0, G)
3. repeat
4. P ′ ← Perturbation(R∗, q, T, history)
5. R∗′ ← LocalNGSearch(P ′, G, history)
6. R∗ ← AcceptanceCriterion(R∗, R∗′)
7. until termination condition met

Local neighborhood graph search. Local neighborhood
graph search for ANNs is a procedure that starts from a set
of seeding points as initial NN candidates and propagates
the search by continuously accessing their neighbors from
previously-discovered NN candidates to discover more NN
candidates. The best-first strategy [3] is usually adopted
for local neighborhood expansion. To this end, a priority

queue is used to maintain the previously-discovered NN can-
didates whose neighborhoods are not expanded yet, and ini-
tially contains only seeds. The best candidate in the priority
queue is extracted out, and the points in its neighborhood
are discovered as new NN candidates and then pushed into
the priority queue. The resulting search path, discovering
NN candidates, may not be monotone, but always attempts
to move closer to the query point without repeating points.
As a local search that finds better solutions only from the
neighborhood of the current solution, the local neighborhood
graph search will be stuck at a locally optimal point and has
to conduct exhaustive neighborhood expansions to find bet-
ter solutions. Instead, we present a query-driven iterated
neighborhood graph search to efficiently find solutions be-
yond local optima.

Iterated local search. Various modifications have been
done over local search to kick a solution out from a local
optimum. A simple modification consists of iterating calls
to the local search routine, each time starting from a differ-
ent initial configuration. This is called repeated local search,
and implies that the knowledge obtained during the previous
local search phases is not used. In contrast, iterated local
search [17] is based on building a sequence of locally optimal
solutions by perturbing the current local optimum and ap-
plying local search after starting from the modified solution.
The standard procedure is outlined in Algorithm 1.

3.2 Query-driven iterated search
Our approach improves the local neighborhood graph

search from two aspects: iterated search and query-driven.
The basic procedure is outlined in Algorithm 2.

• GenerateInitialSolution(q, T) searches over trees T ,
which are constructed to index the reference data
points. The initial solution contains a small amount of
initial NN candidates that might not be good enough
but have high probabilities to be near true NNs. The
trees are kd-trees in our implementation, and the
search over trees is the same to the best-first search
strategy [19, 27, 35].

• LocalNGSearch(P0, G) is similar to the local neigh-
borhood graph (NG) search mentioned before, starting
from a set of seeds P0 and searching over G by con-
ducting neighborhood expansions in a best-first man-
ner. The difference lies in that once reaching a locale

solution, the NG search will pause and return discov-
ered NNs. We will describe the criterion to inspect the
local optimum for our local NG search.

• Perturbation(R∗, q, T, history) generates new seeds
from trees T according to the search history and
previously-identified NNs (R∗), to avoid accessing too
many points that are accessed in both searches over
trees and the neighborhood graph. The detail is given
later.

• LocalNGSearch(P ′, G, history) is slightly different
from LocalNGSearch(P0, G) as the search history,
i.e., the NNs discovered up to the current iteration,
is considered in neighborhood expansion. During the
searches over both trees and the neighborhood graph,
a single priority queue is maintained to store NN can-
didates.

Local optimum inspection. Considering the neighbor-
hood graph G = {(vi, Adj[vi])}

n
i=1 and the query point xq,

the distances of this query to vertices can be written as a
function over the graph vertices, f(vi;xq). In the continuous
case, a function g(x) is said to reach a local minimum at the
point x∗, if there exists some ǫ > 0 such that g(x∗) 6 g(x)
when |x − x∗| < ǫ. We propose an analogical definition of
the local optimum (minimum) for local neighborhood graph
search.

Definition 1 (Local optimum for local NG search).
The distance function f(vi;xq) over the neighborhood graph is
said to reach a local minimum at v∗i if f(v∗i ;xq) 6 f(ui;xq) for
all ui ∈ Adj[v∗i].

The local minimum can be inspected by checking the
graph gradients, {f(ui;xq)−f(vi;xq)}, at vi along the edges
(ui, vi). In this paper, we call a point xi corresponding to v∗i
as a promising point if there exists at least one graph gradi-
ent f(ui;xq)−f(v∗i ;xq) < 0 at v∗i , among uis that belong to
Adj[v∗i] and have not been accessed. In the implementation,
we use an indication variable to record the number of unex-
panded promising points among all the previously-checked
points. The indication variable reaching zero means that the
local neighborhood graph arrives at local solutions.

Perturbation. We generate a small amount of new seeding
points according to the query and the search history, called
query and history driven perturbation. We still use trees,
but perform the search that is slightly different from the
conventional search over trees [19, 27, 35] by taking into
consideration the search history and using the previously-
identified NNs from both trees and neighborhood graph to
determine if a subtree should be searched. Seeds generation
in perturbation will be conducted by resuming the search in
trees that yields the initial solutions. But if using the same
procedure with the conventional scheme [19, 27, 35], it will
result in that many leaf nodes have already been accessed in
the neighborhood graph search, and hence extra much time
overhead, locating the leaf nodes in trees, is taken. To reduce
the time overhead, but still get useful seeds to help jump
out of the local solution, we propose to find only one leaf
node as the seed from a subtree, called a compact subtree,
which contains a set of points with the average similarity
larger than a threshold that is determined by cross validation
in our implementation. Here, the reason of discovering a
single point from a compact tree is that finding the best

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#average query time

a
c
c
u

ra
c
y

Our approach

Depedent + 600

Depedent + 200

Depedent + 1 (AryaM93)

Independent + 1000

Independent + 600

Independent + 200

(a)

0 1000 2000 3000 4000 5000 6000 7000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

#accessed data points

a
c
c
u
ra

c
y

Our approach

Depedent + 600

Depedent + 400

Depedent + 200

Depedent + 1 (AryaM93)

(b)

Figure 2: (a) shows the comparison in terms of
average search time vs. search accuracy over query
independent, query dependent and query driven it-
erated (our approach) schemes, and (b) shows the
comparison in terms of #accessed data points vs.
search accuracy from the query dependent scheme
and our approach.

point through searching the compact tree is more costly than
finding the same point by searching the neighborhood graph
guided by a point near the best one, e.g., the one from the
compact tree here. During the period of building the trees,
an extra attribute is associated with each node of the trees,
indicating the average similarity of the points within the
corresponding subtree and helping determine if a subtree is
a compact tree.

Termination. The iteration process will terminate if the
number of accessed points reaches the threshold or the true
nearest neighbors are found. The former condition is easy
to be interpreted. This is equivalent to stopping the search
when the search time reaches a predefined threshold. The
latter is challenging for the local neighborhood graph search.
In [32], the number of better points, similar to the defini-
tion of our promising point, is used to determine if the true
nearest neighbors have been found. But it could not be the-
oretically guaranteed to find true NNs, and the experiments
show that this stop condition is not reliable. In contrast,
the proposed iterated search scheme has a stop condition to
guarantee that the true nearest neighbors are found. The
condition is similar to the search for exact NNs in trees,
and it is that the best lower bound in the priority queue
maintained for the search in trees is larger than the worst
distance in the previously-identified (K-)NNs.

4. ANALYSIS AND DISCUSSIONS

4.1 Analysis

Empirical analysis. We present the empirical comparison
of different search schemes over a neighborhood graph. The
schemes include a representative query-independent search
scheme [32] that clusters reference data points and regards
the cluster centers as the seeding points, a simple query-
dependent manner that uses the first NN candidate discov-
ered from kd-trees as the seeding point [3], another query-
dependent manner that modifies the scheme [3] and discov-
ers a small amount of NN candidates as the seeding points,
and the proposed query driven iterated search scheme.

Fig. 2(a) presents the comparison in terms of average
query time vs. search accuracy. “Independent + n” means
the query-independent manner clustering the reference data
points into n (200, 600, and 1000) groups [32]. “Dependent

+ n”means the query-dependent manner finding the first n
(1 [3], 200, 600) NN candidates from kd-trees as the seeding
points. The comparison shows that query-dependent man-
ners perform better and our approach performs the best.
Fig. 2(b) presents the search accuracy when accessing the
same number of NN candidates. It shows that our approach
accesses a smaller number of NN candidates but achieves
the same accuracy.

Theoretical analysis. Our approach is based on a deter-
ministic neighborhood graph, and it is uneasy to give the-
oretic analysis. We follow [3] to discuss the property over
a random neighborhood graph. It has been proved [3] that
the query cost is upper bounded.

Theorem 1 (From [3]). Given any n point set S ∈ R
k and

any constant ǫ > 0, one can search over a randomized neighbor-
hood graph from a random seed so that (1 + ǫ)-nearest neighbor
queries can be answered in O(log3 n) expected time.

Instead of the expected time, we are more interested in
the time cost for the good and bad cases.

Property 1. In the good case, starting from an ideal seed,
the expected query time of the search procedure is O(log2 n). In
the bad case, the expected query time is O(log3 n).

This property can be proved using the similar argu-
ments in the proof of Theorem 1 [3]. Suppose the for-
mer and latter cases in Property 1 appear with the prob-
abilities P and 1 − P , then the expected query time is
O(P log2 n+ (1−P) log3 n). (From the perspective of com-
plexity analysis, O(P log2 n + (1 − P) log3 n) = O(log3 n),
but our analysis differentiates them to analyze more de-
tails.) This suggests that the time cost could be reduced
with carefully-selected seeds. Motivated by this, our ap-
proach aims to find a practical implementation toward a high
chance to quickly locate the neighborhood of the optimal
solutions (the good case), i.e., increasing P . The time cost
getting P can be roughly estimated as O(r(P) log n) with
r(P) representing the number of points accessed in trees.

Theorem 2. The expected time cost of the search procedure
with P considered by selecting the best seed from a number of
seeds is O(r(P) logn+ P log2 n+ (1− P) log3 n).

A possible way to improve P is a query-driven non-
iterative one, e.g., generating sufficient seeds at the begin-
ning. This makes it uneasy to get a good balance between
the cost improving P and the benefit from greater P as ex-
periments show that r(P) log n also plays an important role
in practice although it can be ignored in theory. Therefore,
we have proposed a query-driven iterated way to iteratively
generate more seeds to improve P , which yields a better
balance.

4.2 Discussion
The summary of comparison between neighborhood graph

search and partitioning trees, hashing is presented in Tab. 1.

Neighborhood graph construction cost. The construc-
tion itself is a little more costly compared with trees and
hashing. There are some approximate methods, e.g., a
divide-and-conquer algorithm [7]. However, for most ap-
plications, e.g., image search, the neighborhood graph could
be built offline, and the construction can also benefit from
parallel computing. In our implementation, we build the ap-
proximate neighborhood graph using the scheme presented

in [44]. The cost is O(n log n) and acceptable as an offline
process. Particularly, the proposed search approach can be
applied to boosting the accuracy of the approximate neigh-
borhood graph if more time is available. Moreover, the pro-
posed approach can be directly applied to the incremental
neighborhood graph construction when inserting new points
into the reference database.

Neighborhood graph storage cost. The neighborhood
graph is organized by attaching an adjacent list to each
point, which requires additional storage to save adjacent lists
including both the indices and distances. The total storage
will be O(n(k + 2l)), with l the length of the adjacent list
(i.e., the size of the neighborhood) and k the dimension of
the data. In practice, our approach only requires a small
neighborhood, and a neighborhood with 20 NNs (in all the
experiments) leads to sufficiently good results. Therefore,
the increased storage is much smaller than the storage of the
data points, in high-dimensional cases (for example, GIST’s
dimension is 384.). In our experiment, the graph for index-
ing 1M SIFT features takes about 78MB storage while the
features takes about 120MB, and for 1M GIST features they
are about 78MB and 370MB. In contrast, vp-tree and spill-
tree would cost O(n(k + k/b)) with b being the bucket size
associated with the leaf nodes, and 2l in our case is usually
smaller than k/b. A kd-tree and tp-tree (trinary projection
tree [19]) may require relatively smaller storage because only
the indexes of one or more splitting coordinates and the par-
titioning value are attached into each internal node, but the
cost of randomized kd-trees for better search performance
will increase. With the same storage cost, the ANN search
performance of our approach is much better than those of
randomized kd-trees and tp-trees.

Advantages over partitioning trees. Compared with
partitioning trees, the neighborhood graph search has at
least two advantages. On the one hand, the neighborhood
structure provides a more efficient way to locate good NN
candidates because the candidates can be quickly accessed
from the neighborhood, while candidates with partitioning
trees are accessed with the necessity of tree branching and
tracing. On the other hand, our experiments show that the
candidates from the neighborhood are usually better than
those from partitioning trees and hence the neighborhood
graph yields a better order to access the points. The two
advantages have been illustrated in Figs. 1(a) and 1(b).

Advantages over hashing. Hashing based approaches
find NN candidates from the bucket that has the same hash
code with the query. On the one hand, the bucket may
be wrongly located. This drawback could be partially re-
solved by accessing multiple buckets with the similar hash
codes (whose Hamming distance to the hash code of the
query is smaller than a constant) or multiple hash coding,
but it would increase the number of the data points that
need to be accessed and hence leads to much more cost. On
the other hand, the search procedure does not discriminate
data points in the buckets and has to check each data point
without ordering the accessing. This results in a waste of
time on data points with low probabilities to be true NNs.
The paper [8] suggests to increase gradually the radius R in
R-NN search to obtain the approximate NN, which is shown
in [27] to be much slower than partitioning trees.

4.3 Implementation details

Table 1: The comparison of neighborhood graph with partitioning trees and hashing for ANN search.
search stage construction stage

time overhead search order performance storage cost time cost

neighborhood graph low good good medium high
partitioning trees high medium medium medium medium

hashing low poor poor low low

We present a speedup scheme to eliminate distance com-
putation for the points that definitely cannot be the true
NNs. To this end, we record the distances between neigh-
boring points in the NG, which are used to estimate the
lower bound of the distance to the query using the tri-
angle inequality. Suppose the distance from the accessed
point u to the query q is denoted by d(u, q) and the pre-
computed distance from the point u to its neighbor point
v is denoted by d(u, v), the triangle inequality shows that
d(v, q) > |d(u, q)−d(u, v)|. The distance computation d(v, q)
could be eliminated, if d(p∗, q) < |d(u, q)−d(u, v)| holds with
d(p∗, q) being the worst distance in the previously identified
NNs. This elimination could save much time, especially for
the high-dimensional case.

Besides, we introduce two practical schemes to balance the
local NG search and perturbation for seed generation such
that the advantages of local NG search and seed generation
are well exploited. We observed that at the early NG search
stage it is not easy to reach local solutions. This is because
the seeds are still far away from the true NNs and hence the
search path has a high chance to get closer to better NNs.
As a consequence, there may be a low chance for the NG
search to quickly jump toward the true NNs. To deal with
this issue, we trigger the perturbation step, if the search
has conducted a fixed number of successive neighborhood
expansions failing to yield promising points (condition 1).

At the later search stage, instead, it is found that the
local search in the neighborhood graph arrives at local so-
lutions frequently and the switch to search in trees is too
frequent. The search at this stage mostly aims to conduct
a finer search to get the true NNs. But the time overhead
of search in trees is larger than in the NG. Therefore, it is
desired at this stage not to search trees too frequently. To
this end, we introduce a scheme to balance the numbers of
points accessed in trees and the NG so that the points from
trees do not exceed a fraction of the total accessed points
(condition 2). It should be noted that our algorithm does
not discriminate whether the search is at the early stage or
at the later stage and that the whole search process always
checks the two conditions described above

The two parameters, the thresholds of the number of suc-
cessive failure neighborhood expansions and the ratio be-
tween the number of points accessed in trees and total ac-
cessed points in the above two schemes, are obtained by
cross validation through selecting a small number of points
as the validation queries to tune the two parameters. This
cross validation scheme is feasible and the cost is very low
as it only affects the search procedure without affecting the
neighborhood graph construction.

5. EXPERIMENTS

Data sets. We demonstrate the proposed approach to
ANN search over visual descriptors, SIFT features for patch
matching, and GIST features for similar image search. The

SIFT features are collected from the Caltech 101 data
set [10] and recognition benchmark images [29]. We extract
maximally stable extremal regions (MSERs) for each im-
age, and compute a 128-dimensional SIFT feature for each
MSER. For each image set, we randomly sample 1000K
SIFT features and 100K SIFT features, respectively as the
reference and query database, and additional 1K SIFT fea-
tures as the validation data to determine the parameters in
the search algorithm. We guarantee that the three data sets
do not contain the same points.

Besides, we conduct the ANN search experiments on the
tiny image set [39] to justify our approach for scalable similar
image search. The tiny image data set consists of 80 million
images and the sizes of all the images in this database are
32 × 32. Similar to [22], we use a global GIST descriptor
to represent each image, which is a 384-dimensional vector
describing the texture within localized grid cells. Its dimen-
sion is higher than that of the SIFT feature, and hence the
ANN search is more challenging. We generate two data sets
for similar image search, each including 1000K images as
the reference database and 100K images as the queries, ad-
ditional 1K images for the validation database.

Evaluation scheme. To evaluate the performance, we
adopt the accuracy measurement to check whether the ap-
proximate nearest neighbors for each query is exactly the
ground truth, the true nearest neighbors. In our experi-
ments, we build the ground truth through the exhaustive
linear scan. To evaluate the search performance for approx-
imate K-nearest neighbors, the accuracy is computed by the
ratio of the number of data points appearing both in ANN
search results and the true nearest neighbors to the number
of desired NNs.

We compare the search performances of widely-used ANN
search algorithms, with partitioning trees, hashing and ex-
isting neighborhood graph search algorithms. Partitioning
trees for comparison include tp-trees [19], bd-trees [4], vp-
tree [48], spill-trees [23], and flann [27]. We report the re-
sult from flann [27] and do not report the results from kd-
trees [35] and hierarchical k-means tree (clustering-tree) [29]
because flann aims to find the optimal configuration between
multiple randomized kd-trees and hierarchical k-means tree
and hence expects to be better as described in [27]. In
addition, we also report the results from local neighbor-
hood graph search with a single seed (AryaM93) [3], and
query-independent (“NG + independent”) [32]. In our ex-
periments, kd-trees are adopted as the partitioning trees for
our approach. We run the implementations of spectral hash-
ing [45], locality sensitive hashing (LSH) [8], flann, and bd-
tree, downloaded from the Web sites, with the parameters
determined by their algorithms, to get the search results.
We follow the algorithm descriptions in vp-trees, spill-trees
and tp-trees, and report results by well implementing the al-
gorithms and tuning the parameters, to get the best results.
Consistent with the report in [27], the performance from

hashing based approaches is much poorer than tree based
methods with even an order of magnitude, and hence we do
not plot the curves in the result for clear comparison of our
approach with other methods. All the experiments are run
on a 2.66GHz desktop PC.

5.1 Comparisons

Quantitative results. The ANN search performance com-
parison is shown in Fig. 3 on two data sets, similar patch
search over SIFT features from the Caltech 101 data set [10]
and recognition benchmark images [29]. The horizontal axis
corresponds to the average query time (milliseconds), and
the vertical axis corresponds to the search accuracy. We
can have the following observations from the comparison.
The proposed approach consistently gets the best perfor-
mance. As shown in Figs. 3(a) and 3(b), at the accuracy of
0.9, it gets at least twice speedup compared with all other
methods, and even costs only about one-fourth of the time
costed by“NG + independent”over the visual descriptors of
recognition benchmark images, as shown in Fig. 3(b). The
superiority of our approach over other tree-based algorithms
is consistent with the analysis in Sec. 4.2.

In addition, we present the comparison for similar image
search over the tiny images [39]. The image is represented by
a GIST feature, a higher-dimensional feature, which is more
challenging. In this case, the superiority of our approach
over other methods is even more significant. Figs. 4(a)
and 4(c) show the performance comparison for approximate
1-NN search, over two reference databases sampled from tiny
images. It can be observed that our approach is much bet-
ter than partitioning trees and existing local neighborhood
graph search methods. Moreover, we present the comparison
about searching for top 20 similar images (i.e., approximate
20-NNs), shown in Figs. 4(b) and 4(d), and the improvement
is consistently significant.

Through a deep inspection of the comparisons, shown
in Fig. 3 (on 128-dimensional descriptors) and Fig. 4 (on
384-dimensional descriptors), it can be observed that the
advantage of our approach to ANN search is more signifi-
cant for high dimensional cases and the superiority at the
requirement of higher accuracy in high-dimensional cases is
also more significant.

Qualitative results. We present the qualitative compar-
isons with representative methods over similar image search,
shown in Fig. 5 and Fig. 6, where (a), (b), (c), and (d) show

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

accessed models

ac
cu

ra
cy

our approach

AryaM93

kd−tree

tp−tree

spill−tree

vp−tree

bd−tree

Figure 7: Shape search performance. The horizontal
axis corresponds to the number of accessed models,
and the vertical axis corresponds to the accuracy.

top 10 similar images of our approach, AryaM93 [3], tp-
tree [19], and “NG + independent” [32]. In each row, the
first image with a blue bounding box is the query, and the
ones bounded by red boxes are truly similar images. We can
see that the results from our approach are much better than
those from other approaches.

5.2 Application with non-metric distances
We present a 3D model retrieval experiment to show the

unique advantage of neighborhood search that it works well
for the non-metric distance. The input of the 3D model re-
trieval task is a 2D sketch or a 2D projection, and the goal
is to search for 3D models that belong to the same cate-
gory of the input. To conduct such a task, we organize 3D
shapes using their 2D contours. The 2D contours are ob-
tained by rendering perspective 2D contours of each model
from 9 views. For each model, we randomly sample one as
a query and the remaining eight for the reference database.
The 2D contours are further vectorized by fitting line seg-
ments to the points with robust moving least-squares [12]
and represented by a set of points with 2D coordinates. To
match two 2D contours, we estimate an affine transforma-
tion between them using RANSAC and use the registration
error as the distance, which is described in [34]. In our ex-
periment, we collect all the models in the Princeton Shape
Benchmark1, which contains 1815 models, and then expand
the database with models of the same categories from the
INRIA GAMMA 3D mesh research database2, yielding 5000
models, and the storage cost of contour images is about
1.5GB.

We index these 2D contours by connecting each 2D con-
tour with its 20 nearest neighbors using the distance de-
scribed above to form a matching graph. Particularly we
also record the affine transform for each edge so that the
matching over the graph from a node v1 to another one
v2 can be speeded up by combining the recorded transform
and the transform from the query to v1 to get an initial
transform estimation to v2. It takes about four hours to
compute the matching graph on a Dell desktop with dual
quad-core Intel Xeon E5540 processors, and about 30MB
to store. We also represent the 2D contour by a vector,
a boundary-descriptor [14]. The vector representations are
used to organize the 2D contours by kd-trees and other re-
lated index structures.

To compare the search performance, for the proposed ap-
proach and local NG search, once a 2D contour is accessed
the distance between the associated model and the query
is evaluated. For other approaches, we search over the in-
dex structures to get a set of candidates and then perform
a reranking step by matching the query and the models cor-
responding to the searched 2D contours. Due to the stored
transforms over our matching graph, our approach and lo-
cal NG search are much faster (over 5 times) than other ap-
proaches. So we only report the comparison in terms of the
accuracy vs. the number of accessed models, shown in Fig. 7.
The accuracy is computed by checking if the searched models
and the query belong to the same category. As we can see,
our approach performs much better than other approaches.
This is because the search with a neighborhood graph is
more effectively towards true nearest neighbors and our it-

1http://shape. cs.princeton.edu/benchmark/
2http://www-roc.inria.fr/gamma/ download/

our approach AryaM93 NG + independent tp−tree spill−tree vp−tree bd−tree flann

0 0.5 1 1.5 2 2.5 3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

average query time

a
c
c
u
ra

c
y

(a)

0 0.5 1 1.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

average query time

a
c
c
u
ra

c
y

(b)

Figure 3: Performance compari-
son over (a) the Caltech 101 data
set [10], (b) recognition bench-
mark images [29].

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

a
c
c
u
ra

c
y

(a)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

average query time

a
c
c
u
ra

c
y

(b)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average query time

a
c
c
u
ra

c
y

(c)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

average query time

a
c
c
u
ra

c
y

(d)

Figure 4: Performance comparison of searching for the most sim-
ilar image in (a) and (c) and top 20 similar images in (b) and (d)
over the tiny images [39].

eration scheme avoids the local issue that is a problem for
the local NG search (AryaM93) [2].

6. CONCLUSIONS
In this paper, we introduce neighborhood graph search

for scalable visual descriptor indexing, and propose a query-
driven iterated neighborhood graph search to deal with the
drawback that the local neighborhood graph search tends
to be stuck at a locally optimal point. We handle the key
problem, how to perform perturbation to trigger a new local
search. The major technologies lie in defining the local solu-
tion over a neighborhood graph for ANN search and present-
ing a query and search history driven perturbation scheme
to generate pivots to restart a new local search. Experimen-
tal results with metric and non-metric distance show that
our approach gets significant improvement over other ANN
search algorithms.

7. REFERENCES
[1] K. Aoyama, K. Saito, H. Sawada, and N. Ueda. Fast

approximate similarity search based on degree-reduced
neighborhood graphs. In KDD, pages 1055–1063, 2011.

[2] S. Arya and D. M. Mount. Algorithms for fast vector
quantizaton. In Data Compression Conference, pages 381–390,
1993.

[3] S. Arya and D. M. Mount. Approximate nearest neighbor
queries in fixed dimensions. In SODA, pages 271–280, 1993.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. J. ACM, 45(6):891–923,
1998.

[5] J. S. Beis and D. G. Lowe. Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In CVPR,
pages 1000–1006, 1997.

[6] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, 1975.

[7] J. Chen, H. ren Fang, and Y. Saad. Fast approximate nn graph
construction for high dimensional data via recursive lanczos
bisection. Journal of Machine Learning Research,
10:1989–2012, 2009.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Symposium on Computational Geometry,
pages 253–262, 2004.

[9] C. Faloutsos and K.-I. Lin. FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and
Multimedia Datasets. In SIGMOD Conference, pages 163–174,
1995.

[10] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: an incremental bayesian
approach tested on 101 object categories. In CVPR 2004
Workshop on Generative-Model Based Vision, 2004.

[11] R. A. Finkel and J. L. Bentley. Quad trees: A data structure
for retrieval on composite keys. Acta Inf., 4:1–9, 1974.

[12] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving
least-squares fitting with sharp features. ACM Trans. Graph.,
24(3):544–552, 2005.

[13] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM
Trans. Math. Softw., 3(3):209–226, 1977.

[14] T. A. Funkhouser, P. Min, M. M. Kazhdan, J. Chen, J. A.
Halderman, D. P. Dobkin, and D. P. Jacobs. A search engine
for 3d models. ACM Trans. Graph., 22(1):83–105, 2003.

[15] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast
approximate nearest-neighbor search with k-nearest neighbor
graph. In IJCAI, pages 1312–1317, 2011.

[16] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with
optimized kernel hashing. In KDD, pages 1129–1138, 2010.

[17] H. H. Hoos and T. Stützle. Stochastic Local Search
Foundations and Applications. Morgan Kaufmann/Elsevier,
2004.

[18] P. Jain, B. Kulis, and K. Grauman. Fast image search for
learned metrics. In CVPR, 2008.

[19] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua. Optimizing
kd-trees for scalable visual descriptor indexing. In CVPR,
pages 3392–3399, 2010.

[20] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary Mathematics,
26:189–206, 1984.

[21] B. Kulis and T. Darrells. Learning to hash with binary
reconstructive embeddings. In NIPS, pages 577–584, 2009.

[22] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing
for scalable image search. In ICCV, pages 2130–2137, 2009.

[23] T. Liu, A. W. Moore, A. G. Gray, and K. Yang. An
investigation of practical approximate nearest neighbor
algorithms. In NIPS, 2004.

[24] A. W. Moore. The anchors hierarchy: Using the triangle
inequality to survive high dimensional data. In UAI, pages
397–405, 2000.

[25] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in
kernel space. In CVPR, pages 3344–3351, 2010.

[26] Y. Mu and S. Yan. Non-metric locality-sensitive hashing. In
AAAI, 2010.

[27] M. Muja and D. G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In VISSAPP (1),
pages 331–340, 2009.

[28] G. Navarro. Searching in metric spaces by spatial
approximation. VLDB J., 11(1):28–46, 2002.

[29] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In CVPR (2), pages 2161–2168, 2006.

[30] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes
from shift-invariant kernels. In NIPS, pages 1509–1517, 2009.

[31] H. Samet. Foundations of multidimensional and metric data
structures. Elsevier, Amsterdam, 2006.

[32] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval
in large databases. In ICPR (3), pages 291–296, 2002.

[33] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. The
MIT press, 2006.

[34] T. Shao, W. Xu, K. Yin, J. Wang, K. Zhou, and B. Guo.
Discriminative sketch-based 3d model retrieval via robust shape
matching. Comput. Graph. Forum, 30(7):2011–2020, 2011.

[35] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast
image descriptor matching. In CVPR, 2008.

[36] J. Sivic and A. Zisserman. Efficient visual search of videos cast
as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell.,
31(4):591–606, 2009.

[37] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism:
exploring photo collections in 3D. ACM Trans. Graph.,
25(3):835–846, 2006.

[38] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong. Multiple
feature hashing for real-time large scale near-duplicate video
retrieval. In ACM Multimedia, pages 423–432, 2011.

[39] A. B. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
30(11):1958–1970, 2008.

[40] G. T. Toussaint. The relative neighbourhood graph of a finite
planar set. Pattern Recognition, 12(4):261–268, 1980.

[41] W. Tu, R. Pan, and J. Wang. Similar image search with a tiny
bag-of-delegates representation. In ACM Multimedia, 2012.

[42] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervised hashing
for scalable image retrieval. In CVPR, pages 3424–3431, 2010.

[43] J. Wang, J. Wang, X.-S. Hua, and S. Li. Scalable similar image
search by joint indices. In ACM Multimedia, 2012.

[44] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. Scalable
k-nn graph construction for visual descriptors. In CVPR, pages
1106–1113, 2012.

[45] Y. Weiss, A. B. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[46] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu.
Complementary hashing for approximate nearest neighbor
search. In ICCV, pages 1631–1638, 2011.

[47] K. Yamaguchi, T. L. Kunii, and K. Fujimura. Octree-related
data structures and algorithms. IEEE Computer Graphics and
Applications, 4(1):53–59, 1984.

[48] P. N. Yianilos. Data structures and algorithms for nearest

neighbor search in general metric spaces. In SODA, pages
311–321, 1993.

[49] S. Zhang, Q. Tian, G. Hua, Q. Huang, and S. Li. Descriptive
visual words and visual phrases for image applications. In ACM
Multimedia, pages 75–84, 2009.

[50] W. Zhou, Y. Lu, H. Li, Y. Song, and Q. Tian. Spatial coding
for large scale partial-duplicate web image search. In ACM
Multimedia, pages 511–520, 2010.

Appendix

The pseudo-code of our approach is outlined as follows.

Algorithm 3 IteratedLocalNGSearch(q,G, T)

// R: a max-heap with a fixed size; Q: a priority queue;
// V [G]: the node set of graph G; n: #accessed points;
// m: #promosing points; r: #accessed points from trees T ;

1. for each u ∈ V [G] do
2. color[u]← WHITE;
3. end for

4. n← 0;
5. m← 0; r ← 0;
6. P ← GenerateInitialSolution(q,T)
7. for each u ∈ P do

8. key[u] ← dist(u, q); color[u]← BLACK;
9. Q← u;
10. if MAX(R) > key[u] then
11. R← u;
12. end if

13. n← n + 1 ;
14. m← m + 1; r ← r + 1;
15. end for

16. t← 0;
17. while (Q 6= ∅ && n < N) do

18. u← EXTRACT-MIN(Q);
/*Start the local neighborhood graph search.*/

19. m← m− 1; b← FALSE;
20. for each v ∈ Adj[u] do
21. if color[v] 6= BLACK then

22. color[v]← BLACK; key[v]← dist(v, q);
23. Q← v;
24. if MAX(R) > key[v] then
25. R← v;
26. end if

27. n← n + 1;
28. if IsPromising(v) then

29. m← m + 1; b← TRUE;
30. end if

31. end if

32. end for

33. if b == FALSE then

34. t← t + 1;
35. else

36. t← 0;
37. end if

/*m <= 0 means arriving at a local optimum. t >= F and
r/n < L mean the conditions in the two schemes described
in Sec. 4.3*/

38. if (m <= 0‖t >= F)&&(r/n < L) then

39. P ← Perturbation(q,T, R);
40. for each u ∈ P do

41. key[u] ← dist(u, q); color[u]← BLACK;
42. Q← u;
43. if MAX(R) > key[u] then
44. R← u;
45. end if

46. n← n + 1; m← m + 1; r ← r + 1;
47. end for

48. if t >= F then

49. t← 0;
50. end if

51. end if

52. end while

53. return R;

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 5: Qualitative comparisons. (a), (b), (c),
and (d) show top 10 similar images of our approach,
AryaM93 [3], tp-tree [19], and “NG + indepen-
dent” [32]. In each row, the first image with a blue
bounding box is the query, and the ones bounded by
red boxes are truly similar images.

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 6: Qualitative comparisons. (a), (b), (c),
and (d) show top 10 similar images of our approach,
AryaM93 [3], tp-tree [19], and “NG + indepen-
dent” [32]. In each row, the first image with a blue
bounding box is the query, and the ones bounded by
red boxes are truly similar images.

